Vol. 32, issue 01, article # 10

Razenkov I. A. Optimization of parameters of a turbulent lidar. // Optika Atmosfery i Okeana. 2019. V. 32. No. 01. P. 70-81. DOI: 10.15372/AOO20190110 [in Russian].
Copy the reference to clipboard

Abstract:

The article presents a comparison of experimental and calculated data on the shape of the peak of backscattering enhancement in the propagation of a beam in a turbulent atmosphere. Two schemes of construction of a two-channel turbulent lidar are considered and calculations of the ratio of lidar echoes and the factor of turbulence influence on the average power of the scattered light on the receiver depending on the geometric characteristics of the receiver-transmitter are carried out. Recommended diameter transmit-receive aperture lidar is 50–70 mm. To create an eye-safe lidar with high potential, it is proposed to use a laser with a wavelength of 355 nm. The obtained estimate of the echo and of the influence of turbulence for day and twilight values of background light. The possibility of remote detection of turbulent zones in the troposphere is estimated for an ultraviolet turbulent lidar.

Keywords:

atmospheric turbulence, backscatter enhancement effect, lidar

References:

1.  Gurvich A.S. Lidarnoe zondirovanie turbulentnosti na osnove effekta usileniya obratnogo rasseyaniya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 6. P. 655–665.
2.  Gurvich A.S. Lidarnoe pozitsionirovanie oblastey povyshennoy turbulentnosti yasnogo neba // Izv. RAN. Fiz. atmosf. i okeana. 2014. V. 50, N 2. P. 166–174.
3.  Gurvich A.S. Lidar. Patent na poleznuyu model' N 116245. Zaregistrirovano v Gosudarstvennom reestre poleznykh modeley Rossiyskoy Federatsii 20 may 2012 year.
4.  Vinogradov A.G., Kravtsov Yu.A., Tatarskiy V.I. Effekt usileniya obratnogo rasseyaniya na telakh, pomeshchennykh v sredu so sluchaynymi neodnorodnostyami // Izv. vuzov. Radiofiz. 1973. V. 16, N 7. P. 1064–1070.
5.  Banakh V.A., Mironov V.L. Lokatsionnoe rasprostranenie lazernogo izlucheniya v turbulentnoy atmosfere. Novosibirsk: Nauka, 1986. 173 p.
6.  Afanas'ev A.L., Gurvich A.S., Rostov A.P. Eksperimental'noe issledovanie effekta usileniya obratnogo rasseyaniya v turbulentnoy atmosfere // XVIII Mezhdunar. simpoz. «Optika atmosfery i okeana. Fizika atmosfery». Irkutsk, 2012. P. C95–C99.
7.  Razenkov I.A., Banakh V.A., Nadeev A.I. Ustroystvo dlya registratsii usileniya obratnogo rasseyaniya v atmosfere. Patent na poleznuyu model' N 153460. Zaregistrirovano v Gosudarstvennom reestre poleznykh modeley Rossiyskoy Federatsii 24 june 2015 year.
8.  Banakh V.A., Razenkov I.A. Aerozol'nyy lidar dlya issledovaniya usileniya obratnogo atmosfernogo rasseyaniya. II. Konstruktsiya i eksperiment // Optika atmosf. i okeana. 2015. V. 28, N 2. P. 113–119.
9.  Banakh V.A., Razenkov I.A., Smalikho I.N. Laser echo signal amplification in a turbulent atmosphere // Appl. Opt. 2015. V. 54, N 24. P. 7301–7307.
10.  Banakh V.A., Razenkov I.A. Lidarnye izmereniya usileniya obratnogo rasseyaniya // Optika i spektroskopiya. 2016. V. 120, N 2. P. 339–348.
11.  Banakh V.A., Razenkov I.A. Refractive turbulence strength estimation based on the laser echo signal amplification effect // Opt. Lett. 2016. V. 41, N 19. P. 4429.
12.  Razenkov I.A. Turbulentnyy lidar. I. Konstruktsiya // Optika atmosf. i okeana. 2018. V. 31, N 1. P. 41–48; Rаzеnkov I.А. Turbulent lidar: I – Design // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 273–280.
13.  Razenkov I.A. Turbulentnyy lidar. II. Eksperiment // Optika atmosf. i okeana. 2018. V. 31, N 2. P. 81–89; Rаzеnkov I.А. Turbulent lidar: II – Experiment // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 281–289.
14. Banakh V.A., Smalikho I.N. Opredelenie intensivnosti opticheskoy turbulentnosti po obratnomu atmosfernomu rasseyaniyu lazernogo izlucheniya // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 300–307; Banakh V.A., Smalikho I.N. Determination of optical turbulence intensity by atmospheric backscattering of laser radiation // Atmos. Ocean. Opt. 2011. V. 24, N 5. P. 457–465.
15.  Smalikho I.N. Raschet koeffitsienta usileniya obratnogo rasseyaniya lazernogo izlucheniya, rasprostranyayushchegosya v turbulentnoy atmosfere, s ispol'zovaniem chislennogo modelirovaniya // Optika atmosf. i okeana. 2012. V. 25, N 9. P. 796–800; Smalikho I.N. Calculation of the backscatter amplification coefficient of laser radiation propagating in a turbulent atmosphere using numerical simulation // Atmos. Ocean. Opt. 2013. V. 26, N 2. P. 135–139.
16.  Banakh V.A. Usilenie sredney moshchnosti obratno rasseyannogo v atmosfere izlucheniya v rezhime sil'noy opticheskoy turbulentnosti // Optika atmosf. i okeana. 2012. V. 25, N 10. P. 857–862; Banakh V.A. Enhancement of the laser return mean power at the strong optical scintillation regime in a turbulent atmosphere // Atmos. Ocean. Opt. 2013. V. 26, N 2. P. 90–95.
17.  Vorob'ev V.V., Vinogradov A.G. Vliyanie fonovoy turbulentnosti v lidarnykh issledovaniyakh turbulentnosti yasnogo neba // Optika atmosf. i okeana. 2013. V. 26, N 12. P. 1015–1022; Vorob’ev V.V., Vinogradov A.G. Effect of background turbulence in lidar investigations of clear air turbulence // Atmos. Ocean. Opt. 2014. V. 27, N 2. P. 134–141.
18.  Vorob'ev V.V. O primenimosti asimptoticheskikh formul vosstanovleniya parametrov «opticheskoy» turbulentnosti iz dannykh impul'snogo lidarnogo zondirovaniya. I. Uravneniya // Optika atmosf. i okeana. 2016. V. 29, N 10. P. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
19.  Vorob'ev V.V. O primenimosti asimptoticheskikh formul vosstanovleniya parametrov «opticheskoy» turbulentnosti iz dannykh impul'snogo lidarnogo zondirovaniya. II. Rezul'taty chislennogo modelirovaniya // Optika atmosf. i okeana. 2016. V. 29, N 11. P. 987–993; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar Sounding data: II – Results of numerical simulation // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 162–168.
20.  American National Standard Z136.1-1993.
21. Measures R.M. Laser Remote Sensing. Florida: Krieger Publishing Company, 1992. 510 p.
22.  Razenkov I.A. Aerozol'nyy lidar dlya nepreryvnykh atmosfernykh nablyudeniy // Optika atmosf. i okeana. 2013. V. 26, N 1. P. 52–63; Rаzеnkov I.А. Aerosol lidar for continuous atmospheric monitoring // Atmos. Ocean. Opt. 2013. V. 26, N 4. P. 308–319.
23.  Nadeev A.I. O tochnosti registratsii v rezhime scheta fotonov pri nalichii fona // XXIV Rabochaya gruppa «Aerozoli Sibiri»: tez. dokl. Tomsk, 2018. P. 61.
24.  Kaul' B.V. Antennyy kompleks dlya lazernogo zondirovaniya verkhnikh sloev atmosfery // Optika atmosf. i okeana. 1992. V. 5, N 4. P. 431–436.
25.   Belyaev B.I., Belyaev M.Yu., Desinov L.V., Kazak A.A., Katkovskiy L.V., Rogovets A.V. Spektral'nye raspredeleniya yarkosti izlucheniya pri spektrometrirovanii zemli iz kosmosa // ZHurn. prikl. spektrosk. 2012. V. 79, N 4. P. 669–675.
26.  Razenkov I.A., Eloranta E.W., Razenkov I.I. Stable Coaxial Lidar Tranceiver // 25th International Laser Radar Conf. St. Petersburg, Russia. 2010. P. 195–198.
27. Razenkov I.A., Eloranta E.W., Hedrick J.P., Holz R.E., Kuehn R.E., Garcia J.P. A High Spectral Resolution Lidar Designed for Unattended Operation in the Arctic // 21st International Laser Radar Conf. Quebec, Canada. 2002. P. 57–60.