Vol. 31, issue 12, article # 6
Copy the reference to clipboard
Abstract:
A possibility of retrieving the columnar concentration of carbon dioxide using a neural network is analyzed, as well as the concentration profile when sounding from a space orbit of 450 km and from an aerostat at altitudes of 23 and 10 km. Possibilities of using a priori data on temperature, pressure, and reflected and scattered signals are considered. The errors of retrieval of the columnar CO2 are 0.15% and 0.5% at altitudes lower than 2 km for lidar with a telescope diameter of 1 m and laser pulse energy of 50 mJ at a resolution of 60 km.
Keywords:
atmosphere, spaceborne lidar, carbon dioxide, greenhouse gas, neural network
References:
1. Ehret G., Kiemle C., Wirth M., Amediek A. Space-borne remote sensing of CO2, CH4, and N2O by integrated path absorption lidar: a sensitivity analysis // Appl. Phys. 2008. V. 90. P. 593–608.
2. Jianping Mao, Anand Ramanathan, James B. Abshire, Stephan R. Kawa, Haris Riris, Graham R. Allan, Michael Rodriguez, William E. Hasselbrack, Xiaoli Sun, Kenji Numata, Jeff Chen, Yonghoon Choi, Mei Ying, Melissa Yang. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar // Atmos. Meas. Tech. 2018. N 11. P. 127–140. 2018. URL: https://doi.org/ 10.5194/amt-11–127–2018 (last access: 17.09.2018).
3. Ge Han, Xin Ma, Ailin Liang, Tianhao Zhang, Yannan Zhao, Miao Zhang, Wei Gong. Performance evaluation for China’s planned CO2-IPDA // Remote Sens. 2017. N 9. P. 768–789.
4. Ehret G., Bousquet P., Pierangelo C., Alpers M., Millet B., Abshire J.B., Bovensmann H., Burrows J.P., Chevallier F., Ciais P., Crevoisier C., Fix A., Flamant P., Frankenberg Ch., Gibert F., Heim B., Heimann M., Houweling S., Hubberten H.W., Jöckel P., Law K., Löw A., Marshall J., Agusti-Panareda A., Payan S., Prigent C., Rairoux P., Sachs T., Scholze M., Wirth M. MERLIN: A French-German space lidar mission dedicated to atmospheric methane // Remote Sens. 2017. N 9. P. 1052–1081.
5. Sakaizawa D., Kawakami S., Nakajima M., Tanaka T., Morino I., Uchino O. An airborne amplitude-modulated 1.57 mm differential laser absorption spectrometer: simultaneous measurement of partial column-averaged dry air mixing ratio of CO2 and target range // Atmos. Meas. Tech. 2013. N 6. P. 387–396.
6. Menzies R.T., Spiers G.D., Jacob J. Airborne laser absorption spectrometer measurements of atmospheric CO2 column mole fractions: Source and sink detection and environmental impacts on retrievals // J. Atmos. Ocean. Tech. 2014. V. 31 P. 404–421.
7. Kiemle C., Ehret G., Amediek A., Fix A., Quatrevalet M., Wirth M. Potential of spaceborne lidar measurements of carbon dioxide and methane emissions from strong point sources // Remote Sens. 2017. V. 9, N 11. P. 1137–1153.
8. Matvienko G.G., Krekov G.M., Sukhanov A.Ya. Space- borne remote sensing ofgreenhouse gases by IPDA lidar: A potentialities estimate // 25th Intern. Laser Radar Conf. St.-Petersburg, 2010. P. S11P-02.
9. Babchenko S.V., Matvienko G.G., Sukhanov A.Ya. Otsenki vozmozhnostey zondirovaniya parnikovykh gazov CH4 i CO2 nad podstilayushchey poverkhnost'yu IPDA lidarom kosmicheskogo bazirovaniya // Optika atmosfery i okeana. 2015. V. 28, N 1. P. 37–45; Babchenko S.V., Matvienko G.G., Sukhanov A.Ya. Assessing the possibilities of sensing CH4 and CO2 greenhouse gases above the underlying surface with satellite-based IDPA lidar // Atmos. Ocean. Opt. 2015. V. 28, N 3. P. 245–253.
10. Sukhanov A.Ya. Reshenie obratnoy zadachi DIAL-IPDA aerokosmicheskogo lidarnogo zondirovaniya uglekislogo gaza na osnove bionicheskikh metodov. // Optika atmosf. i okeana. 2017. V. 30, N 7. P. 589–597.
11. Sukhanov A.Ya. Algoritmy, metody i kompleksy programm dlya resheniya zadach lidarnogo zondirovaniya atmosfery: dis. … kand. tekhn. nauk. Tomsk: TUSUR, 2006. 151 p.
12. Mamun M.M., Mȕller D. Retrieval of intensive aerosol microphysical parameters from multiwavelength Raman/HSRL lidar: Feasibility study with artificial neural networks // J. Atmos. Meas. Tech. Discuss. 2016. 46 p. DOI: 10.5194/amt-2016-7.
13. Berdnik V.V., Loiko V.A. Neural networks for aerosol particles characterization // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 184. P. 135–145.
14. Krekov G.M., Krekova M.M., Lisenko A.A., Sukhanov A.Ya. Identifikatsiya malykh patogennykh primesey v atmosfere na osnove metoda iskusstvennykh neyronnykh setey // XV rabochaya gruppa «Aerozoli Sibiri». Tomsk, 2008. P. 41.
15. Sukhanov A.Ya. Ob algoritme predobucheniya neyronnoy seti dlya ryada obratnykh zadach lidarnogo zondirovaniya [Elektronnyy resurs] // Optika atmosf. i okeana. Fizika atmosfery: sb. dokl. XXII Mezhdunar. simp. Tomsk: Izd-vo IOA SO RAN, 2016. P. C45–C48. 1 elektron. opt. disk (CD-ROM).
16. Sukhanov A.Ya., Krekov G.M. Raspoznavanie spektrov fluorestsentsii bakteriy i poliaromaticheskikh uglevodorodov // Matematicheskie metody raspoznavaniya obrazov: sb. dokl. vseros. konf., Petrozavodsk, 2011 year. M.: MAKS Press, 2011. P. 514–517.
17. Sukhanov A.Ya., Kataev M.Yu. Vozmozhnosti metoda neyronnykh setey dlya vosstanovleniya profilya kontsentratsii ozona iz lidarnykh dannykh // Optika atmosf. i okeana. 2003. V. 16, N 12. P. 1115–1119.
18. Arshinov M.Yu., Belan B.D., Davydov D.K., Krekov G.M., Fofonov A.V., Babchenko S.V., Inoue G., Machida T., Maksutov Sh., Sasakawa M., Shimoyama K. Dinamika vertikal'nogo raspredelenie parnikovykh gazov v atmosfere // Optika atmosf. i okeana. 2012. V. 25, N 12. P. 1051–1061.
19. Labitzke K., Barnett J.J., Edwards B. Handbook MAP 16. SCOSTEP. 1985. 320 p.
20. Hedin A.E. Extension of the MSIS Thermospheric model into the middle and lower atmosphere // J. Geophys. Res. 1991. V. 96, iss. A2. P. 1159–1172.
21. Komarov V.S. Statisticheskie modeli temperatury i gazovykh komponent atmosfery. L.: Gidrometeoizdat, 1986. 264 p.
22. Balin Yu.S., Borovoy A.G., Burlakov V.D., Dolgiy S.I., Klemasheva M.G., Konoshonkin A.V., Kokhanenko G.P., Kustova N.V., Marichev V.N., Matvienko G.G., Nevzorov A.A., Nevzorov A.V., Penner I.E., Romanovskiy O.A., Samoylova S.V., Sukhanov A.YA., Kharchenko O.V., Shishko V.A. Lidarnyy monitoring oblachnykh i aerozol'nykh poley, malykh gazovykh sostavlyayushchikh i meteoparametrov atmosfery / pod red. G.G. Matvienko. Tomsk: Izd-vo IOA SO RAN. 2015. 450 p.