Vol. 31, issue 10, article # 6

Korshunov V. A., Merzlyakov E. G., Yudakov A. A. Aerosol observations in the upper stratosphere – lower mesosphere by the method of two wavelength lidar sensing. // Optika Atmosfery i Okeana. 2018. V. 31. No. 10. P. 805–814. DOI: 10.15372/AOO20181006 [in Russian].
Copy the reference to clipboard

Abstract:


Results of two wavelength lidar sensing of middle atmosphere are presented at altitude range of 30 to 60 km over Obninck (55.1° N., 36.6° E) in 2012–2017. Monthly mean values of the ratio of coefficients of aerosol and Rayleigh backscattering (RCAR) at 532 nm wavelength averaged through 40–50 km and 50–60 km altitude layers are varied from 0 to 0.02, meanwhile mean peak levels of RCAR at the same layers are changed from 0.1 to 0.2. Short-time (about month) and long-time (half-year and longer) variations in backscattering are observed. Short-time variations are coordinated with meteor shower bursts. Long-period enhancements of backscattering were observed in 2013 after Chelyabinsk meteorite fall and also in the first half of 2016. In 2014–2015, the monthly mean RCAR was zero within measurement error at altitudes of 40–60 km.
A possibility of long-time manifestation of meteoric aerosol in backscattering is analyzed taking into account incoming meteoric mass, gravitational sedimentation of meteoric particles, and vertical wind. It is shown that incoming masses of visible meteor with mass greater than 10-6 kg and bolides are not sufficient for long-time enhancements of backscattering at 50–60 km layer. It is proposed that the most probable cause of backscattering enhancements is the formation of size enlarged fraction of meteoric smoke particles produced at meteor ablation and transported to upper stratosphere within polar stratospheric vortex. In the beginning of 2016, the formation of extremely intensive polar vortex and it’s displacement to Eurasia contributes to this phenomena.

Keywords:

lidar, backscattering, middle atmosphere, meteoric aerosol, meteoric smoke

References:

   1. Mikirov A.E., Smerkalov V.A. Issledovanie rasseyannogo izlucheniya verhnej atmosfery Zemli. L.: Gidrometeoizdat, 1981. 208 p.
   2. Plane J.M.C. Cosmic dust in the earth’s atmosphere // Chem. Soc. Rev. 2012. V. 41. P. 6507–6518.
   3. Bardeen C.G., Toon O.B., Jensen E.J., Marsh D.R., Harvey V.L. Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere // J. Geophys. Res. 2008.  V. 113.  P. D17202.  DOI: 10.1029/2007JD009515.
   4. Hervig M.E., Gordley L.L., Deaver L.E., Siskind D.E., Stevens M.H., Russell J.M.III, Bailey S.M., Megner L., Bardeen C.G. First satellite observations of meteoric smoke in the middle atmosphere // Geophys. Res. Lett. 2009. V. 36. P. L18805. DOI: 10.1029/ 2009GL039737.
   5. Hervig M.E., Brooke J.S.A., Feng W., Bardeen C.G., Plane J.M.C. Constraints on meteoric smoke composition and meteoric influx using SOFIE observations withmodels // J. Geophys. Res.: Atmos. 2017. V. 122, N 13. P. 495–13,505. URL: https://www.doi.org/ 10.1002/2017JD02765.
   6. Bychkov V.V., Marichev V.N. Obrazovanie vodnyh aerozolej v verhnej stratosfere v periody zimnego anomal'nogo pogloshcheniya radiovoln v ionosfere // Optika atmosf. i okeana. 2008. V. 21, N 3. P. 248–255.
   7. Bychkov V.V., Shevtsov B.M., Marichev V.N. Nekotorye srednestatisticheskie harakteristiki poyavleniya aerozol'nogo rasseyaniya v srednej atmosfere Kamchatki // Optika atmosf. i okeana. 2012. V. 25, N 10. P. 868–870; Bychkov V.V., Shevtsov B.M., Marichev V.N. Same statistically average characteristics of occurrence of aerosol scattering in the middle atmosphere of Kamchatka // Atmos. Ocean. Opt. 2013. V. 26, N 2. P. 104–106.
   8. Korshunov V.A., Zubachev D.S., Merzlyakov E.G., Jacobi Ch. Rezul'taty opredeleniya aerozol'nyh harakteristik srednej atmosfery metodom dvuhvolnovogo lidarnogo zondirovaniya i ih sopostavlenie s izmereniyami meteornogo radioekha // Optika atmosf. i okeana. 2014. V. 27, N 10. P. 862–868; Korshunov V.A., Zubachev D.S., Merzlyakov E.O., Jacobi Ch. Aerosol parameters of middle atmosphere measured by two-wavelength lidar sensing and their comparison with radio meteor echo measurements // Atmos. Ocean. Opt. 2015. V. 28, N 1. P. 82–88.
   9. Cheremisin A.A., Granitskij L.V., Myasnikov V.M., Vetchinkin N.V. Distantsionnoe zondirovanie v ul'trafioletovom diapazone aerozol'nogo sloya v okrestnosti stratopauzy s borta kosmicheskoj astrofizicheskoj stantsii «Astron» // Optika atmosf. i okeana. 1998. V. 11, N 10. P. 1111–1117.
10. Keckhut P., Hauchecorne A., Chanin M.L. A critical review of the data base acquired for the long term surveillance of the middle atmosphere by French Rayleigh lidars // J. Atmos. Ocean. Technol. 1993. V. 10, iss. 6. P. 850–867.
11. Klekociuk A.R., Brown P.G., Pack D.W., ReVelle D.O., Edwards W.N., Spalding R.E., Tagliaferri E., Yoo B.B., Zagari J. Meteoritic dust from the atmospheric disintegration of a large meteoroid // Nature. 2005. V. 436, N 7054. P. 1132–1135.
12. Ivanov V.N., Zubachev D.S., Korshunov V.A., Lapshin V.B., Ivanov M.S., Galkin K.A.,. Gubko P.A, Antonov D.L., Tulinov G.F., Cheremisin A.A., Novikov P.V., Nikolashkin S.V., Titov S.V., Marichev V.N. Lidarnye nablyudeniya stratosfernyh aerozol'nyh sledov ot CHelyabinskogo meteorita // Optika atmosf. i okeana. 2014. V. 27, N 2. P. 117–122.
13. Cheremisin A.A., Novikov P.V., Shnipov I.S., Bychkov V.V., Shevtsov B.M. Lidarnye nablyudeniya i mekhanizm formirovaniya struktury aerozol'nyh sloev v stratosfere i mezosfere nad Kamchatkoj // Geomagnetizm i aeronomiya. 2012. V. 52, N 5. P. 690–700.
14. Gryazin V.I., Beresnev S.A. Influence of vertical wind on stratospheric aerosol transport // Meteorol. Atmos. Phys. 2011. V. 110. P. 151–162. DOI: 10.1007/s00703-010-011.
15. Della Corte V., Franciscus J., Rietmeijer M., Alessandra Rotundi A., Ferrari M., Palumbo P. Meteoric CaO and carbon smoke particles collected in the upper stratosphere from an unanticipated source // Tellus B: Chem. Phys. Meteorol. 2013. V. 65, N 1. P. 20174. DOI: 10.3402/tellusb.v65i0.20174.
16. Glazov G.N. Statisticheskie voprosy lidarnogo zondirovaniya atmosfery. Novosibirsk: Nauka, 1987. 311 p.
17. Behrendt A., Nakamura T. Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature // Opt. Express. 2002. V. 10, N 16. P. 805–817.
18. Adam M. Notes on temperature-dependent lidar equations // J. Atmos. Ocean. Technol. 2009. V. 26, N 6. P. 1021–1039.
19. Rietmeijer F.J.M. Interrelationships among meteoric metals, meteors, interplanetary dust, micrometeorites, and meteorites // Meteorit. Planet. Sci. 2000. V. 35, iss. 5. P. 1025–1041.
20. Spurný P., Borovička J., Mucke H., Svoreň J. Discovery of a new branch of the Taurid meteoroid stream as a real source of potentially hazardous bodies // Astron. Astrophys. 2017. V. 605. P. A68. DOI: 10.1051/0004-6361/201730787.
21. International Meteor Organization. Visual Meteor Database. URL: https://www.imo.net/members/ imo_vmdb/ (last access: 5.03.2018).
22. Neely R.R. III, English J.M., Toon O.B., Solomon S., Mills M., Thayer J.P. Implications of extinction due to meteoritic smoke in the upper stratosphere // Geophys. Res. Lett. 2011. V. 38. P. L24808. DOI:10.1029/ 2011GL049865.
23. Ceplecha Z., Borovička J., Elford W., Revelle D., Hawkes R., Porubčan V., Šimek M. Meteor phenomena and bodies // Space Sci. Rev. 1998. V. 84, iss. 3/4. P. 327–471.
24. Carrillo-Sánchez, J.D., Plane J.M.C., Feng W., Nesvorný D., Janches D. On the size and velocity distribution of cosmic dust particles entering the atmosphere // Geophys. Res. Lett. 2015. V. 42, iss. 15. P. 6518–6525. DOI: 10.1002/ 2015GL065149.
25. Kalashnikova O., Horanyi M., Thomas G.E., Toon O.B. Meteoric smoke production in the atmosphere // Geophys. Res. Lett. 2000. V. 27, N 20. P. 3293–3296.
26. Brown P., Spalding R.E., ReVelle D., Tagliaferri O.E., Worden S.P. The flux of small near-Earth objects colliding with the Earth // Nature. 2002. V. 420. P. 314–316. DOI: 10.1038/nature01238.
27. Filippov V.A. Lazerno-lokatsionnye issledovaniya meteornyh sledov i vnutrennih gravitatsionnyh voln: Avtoref. dis. … kand. fiz.-mat. nauk. Respublika Kazahstan. Almaty: AO «Natsional'nyj tsentr kosmicheskih issledovanij i tekhnologij». Almaty, 2010. 17 p.
28. Gryazin V.I., Beresnev S.A. O vertikal'nom dvizhenii fraktalopodobnyh chastits v atmosfere // Optika atmosf. i okeana. 2011. V. 24, N 6. P. 506–509.
29. Saunders R.W., Dhomse S., Tian W.S., Chipperfield M.P., Plane J.M.C. Interactions of meteoric smoke particles with sulphuric acid in the Earth’ stratosphere // Atmos. Chem. Phys. 2012. V. 12. P. 4387–4398. DOI: 10.5194/acp-12-4387-2012.
30. Jet propulsion laboratory. Fireball and Bolide Data. URL: https://www.cneos.jpl.nasa.gov/fireballs/ (last access: 10.04.2018).
31. Matthias V., Dörnbrack A., Stober G. The extraordinary strong and cold polar vortex in the early northern winter 2015/2016 // Geophys. Res Lett. 2016. V. 43, iss. 23. P. 12.287–12.294.
32. Palmeiro F.M., Iza M., Barriopedro D., Calvo N., García-Herrera R. The complex behavior of El Niño winter 2015–2016 // Geophys. Res Lett. 2017. V. 44, iss. 6. P. 2902–2910.
33. Nikiforova M.P., Zvyagintsev A.M., Vargin P.N., Ivanova N.S., Luk'yanov A.N., Kuznetsova I.N. Anomal'no nizkie urovni obshchego soderzhaniya ozona nad severom Urala i Sibiri v kontse january 2016 year. // Optika atmosf. i okeana. 2017. V. 30, N 1. P. 12–19; Nikiforova M.P., Zvyagintsev A.M., Vargin P.N., Ivanova N.S., Lukyanov A.N., Kuznetsova I.N. Anomalously low total ozone levels over the Northern Urals and Siberia in late January 2016 // Atmos. Ocean. Opt. 2017. V. 30, N 3. P. 255–262/
34. Kropotkina E.P., Solomonov S.V., Rozanov S.B., Ignat'ev A.N., Lukin A.N. Izmeneniya soderzhaniya ozona v stratosfere nad Moskvoj pod vliyaniem dinamicheskih protsessov v holodnyj period 2015–2016 years. // Kratkie soobshcheniya po fizike FIAN. 2018. N 1. P. 17–24.
35. Curtius J., Weigel R., Vossing H.-J., Wernli H., Wer-ner A., Volk C.-M., Konopka P., Krebsbach M., Schil-ler C., Roiger A., Schlager H., Dreiling V., Borrmann S. Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements //Atmos. Chem. Phys. 2005. V. 5, iss. 11. P. 3053–3069.
36. Megner L., Siskind D.E., Rapp M., Gumbel J. Global and temporal distribution of meteoric smoke: A two dimensional simulation study // J. Geophys. Res. 2008. V. 113. P. D03202. DOI: 10.1029/2007JD009054.