Vol. 31, issue 09, article # 5
Copy the reference to clipboard
Abstract:
The results of lidar investigation of wind turbulence in the presence of low-level jet (LLJ) in the atmospheric boundary layer are presented. From the measurements by Stream Line lidar at the Basic Experimental Complex of IAO SB RAS and on the coast of Lake Baikal, different turbulence parameters inside LLJ were estimated. It is ascertained that the turbulence is very weak in the central part of LLJ. In particular, the turbulence kinetic energy does not exceed 0.1 (m/s)2. The turbulent energy dissipation rate and turbulence integral scale within a jet stream were quantitatively estimated from lidar measurements with a relative error of no more than 12% for the first time. According to these measurements, a dissipation rate of about 10-5 m2/s3 is characteristic. From the lidar measurements on the coast of Lake Baikal, the turbulent energy dissipation rate in the lower part of a jet stream exceeds the corresponding value in the upper part of the LLJ by 1 to 2 orders of magnitude. In the central part of LLJ, the turbulence integral scale averages about 100 m, which is 2–3 times lower than the effective thickness of the jet stream.
Keywords:
coherent Doppler lidar, wind turbulence, low-level jet
Figures:
References:
1. Byzova N.L., Ivanov V.N., Garger E.K. Turbulentnost' v pogranichnom sloe atmosfery. L.: Gidrometeoizdat, 1989. 263 p.
2. Krasnenko N.P. Akusticheskoe zondirovanie atmosfernogo pogranichnogo sloya. Tomsk: Izd-vo IOM SO RAN, 2001. 278 p.
3. Kuznetsov R.D. Akusticheskij lokator LATAN-3 dlya issledovaniya atmosfernogo pogranichnogo sloya // Optika atmosf. i okeana. 2007. V. 20, N 8. P. 749–753.
4. Naihanson F.E. Radar Design Principles. New York: McGraw-Hill, 1980. 626 p.
5. Doviak R.J., Zrnic D.S. Doppler radar and weather observations. San Diego: Academic Press, 1984. 458 p.
6. Bilbro J.M. Atmospheric laser Doppler velocimetry: An overview // Opti. Eng. 1980. V. 20, N 12. P. 2048–2054.
7. Hall F.F., Huffaker R.M., Hardesty R.M., Jackson M.E., Lawrence T.R., Post M.J., Richter R.A., Weber B.F. Wind measurement accuracy of the NOAA pulsed infrared Doppler lidar // Appl. Opt. 1984. V. 23, N 15. P. 2503–2506.
8. Henderson S.W., Hale C.P., Magee J.R., Kavaya M.J., Huffaker A.V. Eye-safe coherent laser radar system at 2 mm using Tm. Ho: YAG lasers // Opt. Lett. 1991. V. 16. P. 773–775.
9. Werner Ch., Flamant P.H., Reitebuch O., Kopp F., Streicher J., Rahm S., Nagel E., Klier M., Herrmann H., Loth C., Delville P., Drobinski Ph., Romand B., Boitel Ch., Oh D., Lopez M., Meissonnier M., Bruneau D., Dabas A. Wind infrared Doppler lidar instrument // Opt. Eng. 2001. V. 40, N 1. P. 115–125.
10. Kameyama S., Ando T., Asaka K., Hirano Y., Wadaka S. Compact all-fiber pulsed coherent Doppler lidar system for wind sensing // Appl. Opt. 2007. V. 46, N 11. P. 1953–1962.
11. Kallistratova M.A, Kouznetsov R.D., Kuznetsov D.D. Kuznetsova I.N., Nakhaev M., Chirokova G. The summertime low-level jet characteristics measured by sodars over rural and urban areas // Meteorol. Z. 2009. V. 18, N 3. P. 289–295.
12. Kallistratova M.A., Kouznetsov R.D. Low-level jets in the Moscow region in summer and winter observed with a sodar network // Bound.-Layer Meteorol. 2012. V. 143. P. 159–175.
13. Kallistratova M.A., Kouznetsov R.D., Kramar V.F., Kuznetsov D.D. Profiles of wind speed variances within nocturnal low-level jets observed with a sodar // J. Atmos. Ocean. Technol. 2013. V. 30, N 9. P. 1970–1977.
14. Prabha T.V., Leclerc M.Y., Karipot A., Hollinger D.Y. Influence of nocturnal low-level jets on eddy-covariance fluxes over a tall forest canopy // Bound.-Layer Meteorol. 2008. V. 126. P. 219–236.
15. Newsom R.K., Banta R.M. Shear-flow instability in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99 // J. Atmos. Sci. 2003. V. 60, N 1. P. 16–33.
16. Banta R.M., Newsom R.K., Lundquist J.K., Pichugina Y.L., Coulter R.L., Mahrt L. Nocturnal low-level jet characteristics over Kansas during CASES-99 // Bound.-Layer Meteor. 2002. V. 105. P. 221–252.
17. Banta R.M., Pichugina Y.L., Newsom R.K. Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer // J. Atmos. Sci. 2003. V. 60. P. 2549–2555.
18. Banta R.M., Pichugina Y. L., Brewer W.A. Turbulent velocity-variance profiles in the stable boundary layer generated by a nocturnal low-level jet // J. Atmos. Sci. 2006. V. 63. P. 2700–2719.
19. Pichugina Y.L., Banta R.M., Kelley N.D., Brewer W.A. Nocturnal boundary layer height estimate from Doppler lidar measurements // Proc. the 18th Symposium on Boundary Layer and Turbulence, Stockholm, Sweden, June 2008. 7B.6.
20. Grund C.J., Banta R.M., George J.L., Howell J.N., Post M.J., Richter R.A., Weickman A.M. High-resolution Doppler lidar for boundary layer and cloud research // J. Atmos. Ocean. Technol. 2001. V. 18, N 3. P. 376–393.
21. Smalikho I., Köpp F., Rahm S. Measurement of atmospheric turbulence by 2-mm Doppler lidar // J. Atmos. Ocean. Technol. 2005. V. 22, N 11. P. 1733–1747.
22. Banah V.A., Smaliho I.N., Pichugina E.L., Bryuer A. Reprezentativnost' izmerenij skorosti dissipatsii energii turbulentnosti skaniruyushchim kogerentnym doplerovskim lidarom // Optika atmosf. i okeana. 2009. V. 22, N 10. P. 966–972; Bаnakh V.А., Smaliho I.N., Pichugina Е.L., Brewer W.A. Representativeness of measurements of the dissipation rate of turbulence energy by scanning Doppler lidar // Atmos. Ocean. Opt. 2010. V. 23, N 1. P. 48–54.
23. Банах В.А., Смалихо И.Н. Когерентные доплеровские ветровые лидары в турбулентной атмосфере. Томск: Изд-во ИОА СО РАН, 2013. 304 p.
24. Smaliho I.N., Banah V.A., Falits A.V. Lidarnye izmereniya parametrov vetrovoj turbulentnosti v pogranichnom sloe atmosfery // Optika atmosf. i okeana. 2017. V. 30, N 4. P. 342–349.
25. Smaliho I.N., Banah V.A., Falits A.V., Rudi Yu.A. Opredelenie skorosti dissipatsii energii turbulentnosti iz dannyh, izmerennyh lidarom Stream Line v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2015. V. 28, N 10. P. 901–905.
26. Monin A.S., Yaglom A.M. Statisticheskaya gidromekhanika. Part 2. M.: Nauka, 1967. 720 p.
27. Lamli Zh., Panovskij G. Struktura atmosfernoj turbulentnosti. M.: Mir, 1966. 264 p.
28. von Kàrmàn T. Progress in the statistical theory of turbulence // Proc. the National Acad. Sci. 1948. V. 34, N 11. P. 530–539. DOI: 10.1073/pnas.34.11.530.
29. Smaliho I.N., Banah V.A. Tochnost' otsenivaniya skorosti dissipatsii energii turbulentnosti iz izmerenij vetra impul'snym kogerentnym doplerovskim lidarom pri konicheskom skanirovanii zondiruyushchim puchkom. Part I. Algoritm obrabotki lidarnyh dannyh // Optika atmosf. i okeana. 2013. V. 26, N 3. P. 213–219; Smalikho I.N., Bаnakh V.А. Accuracy of estimation of the turbulent energy dissipation rate from wind measurements with a conically scanning pulsed coherent Doppler lidar. Part I. Algorithm of data processing // Atmos. Ocean. Opt. 2013. V. 26, N 5. P. 404–410.
30. Kolmogorov A.N. Lokal'naya struktura turbulentnosti v neszhimaemoj vyazkoj zhidkosti pri ochen' bol'shih chislah Rejnol'dsa // Dokl. AN SSSR. 1941. V. 30, N 4. P. 299–303.
31. Smalikho I.N., Banakh V.A. Measurements of wind turbulence parameters by a conically scanning coherent Doppler lidar in the atmospheric boundary layer // Atmos. Meas. Tech. 2017. V. 10, N 11. P. 4191–4208.
32. Banakh V.A., Smalikho I.N. Lidar observations of atmospheric internal waves in the boundary layer of atmosphere on the coast of Lake Baikal // Atmos. Meas. Tech. 2016. V. 9, N 10. P. 5239–5248.
33. Eberhard W.L., Cupp R.E., Healy K.R. Doppler lidar measurement of profiles of turbulence and momentum flux // J. Atmos. Ocean. Technol. 1989. V. 6. P. 809–819.