Vol. 31, issue 08, article # 2

Sinitsa L. N., Lugovskoy A. A., Serdyukov V. I., Arshinov M. Yu. Changes in the multilayer dielectric coating reflection coefficient change under variations in the medium humidity. // Optika Atmosfery i Okeana. 2018. V. 31. No. 08. P. 601–608. DOI: 10.15372/AOO20180802 [in Russian].
Copy the reference to clipboard

Abstract:

It was found that the reflection coefficient of multilayer dielectric mirrors strongly depends on the medium (gas sample) humidity. This effect can lead to both an increase and a decrease in the reflection coefficient, which is determined by the change in the dielectric layer refractive indices (when filled with water vapor). The mirror reflection coefficient can increase up to 0.9% in a gas with a humidity close to the dew point. Changes in the reflection coefficient of a mirror in gas media containing different isotopes of water vapor H216O, H218O, and D2O are studied. Mirrors of the CRDS spectrometers with a reflection coefficient R = 0.9999 were studied and the upper bound of the effect was estimated.

Keywords:

water, reflection coefficient, dielectric mirrors, nanopores

References:

    1.    Godlevskij A.P. Lazernye metody opredeleniya parametrov atmosfery na osnove vnutrirezonatornogo pogloshcheniya i opticheskogo proboya // Dis. ... kand. fiz.-matem. nauk. Tomsk: TGU, 1981.
   2. Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 μm transparency window // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 381–391.
   3. Tretyakov M.Yu., Krupnov A.F., Koshelev M.A., Makarov D.S., Serov E.A., Parshin V.V. Resonator spectrometer for precise broadband investigations of atmospheric absorption in discrete lines and water vapor related continuum in millimeter wave range // Rev. Sci. Instrum. 2009. V. 80. P. 093106.
   4. Koshelev M.A., Serov E.A., Parshin V.V., Tretyakov M.Yu. Millimeter wave continuum absorption in moist nitrogen at temperatures 261–328 K // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 2704–2712.
   5. Mondelain D., Manigand S., Kassi S., Campargue A. Temperature dependence of the water vapor self-continuum by cavity ring-down spectroscopy in the 1.6 µm transparency window // J. Geophys. Res.: Atmos. 2014. V. 119. P. 5625–5639.
   6. Serdyukov V.I., Sinitsa L.N., Lugovskoi A.A. Influence of gas humidity on the reflection coefficient of multilayer dielectric mirrors // Appl. Opt. 2016. V. 55, N 17. P. 4763.
   7. Engeln R., Berden G., Peeters R., and Meijer G. Cavity enhanced absorption and cavity enhanced magnetic rotation spectroscopy // Rev. Sci. Instrum. 1998. V. 69. P. 3763–3769.
   8. Vander Auwera J., Ngo N.H., El Hamzaoui H., Capoen B., Bouazaoui M., Ausset P., Boulet C., Hartmann J.-M. Infrared absorption by molecular gases as a probe of nanoporous silica xerogel and molecule-surface collisions: Low-pressure results // Phys. Rev. A. 2013. V. 88. P. 042506.
   9. Bernstein H.J., Herzberg G. Rotation‐vibration spectra of diatomic and simple polyatomic molecules with long absorbing paths. I. The spectrum of fluoroform (CHF3) from 2.4 μ to 0.7 μ // J. Chem. Phys. 1948. V. 16. P. 30–39.
10. Serdyukov V.I., Sinitsa L.N., Vasil’chenko S.S., Voronin B.A. High-sensitive Fourier-transform spectroscopy with short-base multipass absorption cells // Atmos. Ocean. Opt. 2013. V. 26. P. 329–336.
11. Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Chris Benner D., Bernath P.F., Birk M., Bizzocchi L., Boudon V., Brown L.R., Campargue A., Chance K., Cohen E.A., Coudert L.H., Devi V.M., Drouin B.J., Faytl A., Flaud J.-M., Gamache R.R., Harrison J.J., Hartmann J.-M., Hill C., Hodges J.T., Jacquemart D., Jolly A., Lamouroux J., Le Roy R.J., Li G., Long D.A., Lyulin O.M., Mackie C.J., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A.V., Orphal J., Perevalov V., Perrin A., Polovtseva E.R., Richard C., Smith M.A.H., Starikova E., Sung K., Tashkun S., Tennyson J., Toon G.C., Tyuterev Vl.G., Wagner G. The HITRAN 2012 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50.
12. Ptashnik I.V., Shine K.P., Vigasin A.A. Water vapour selfcontinuum and water dimers: 1. Analysis of recent work // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112. P. 1286–1303.
13. Ptashnik I.V., Petrova T.M., Ponomarev Y.N., Solodov A.A., Solodov A.M., Shine K.P. Near-infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35.
14. Rouquerol F., Rouquerol J., Sing K. Adsorption by Powders and Porous Solids. Principles, Methodology and Applications. London: Academic Press, 1999. 467 p.
15. Sinitsa L.N., Lugovskoy A.A. Dynamic registration of the absorption spectrum of water in the SiO2 nanopores in high frequency range // J. Chem. Phys. 2010. V. 133. P. 204506 (1–5).
16. Kishenbaum I. Tyazhelaya voda. Fizicheskie svojstva i metody analiza. M.: 1953. 488 p.
17. Shatenshtejn A.I. Izotopnyj analiz vody. M.: Izd-vo AN SSSR, 1957. 265 p.
18. Demtröder W., Laser Spectroscopy: Experimental Techniques, 4th ed. Berlin, Heildelberg: Springer, 2008. 797 p.
19. Sinitsa L.N., Serdyukov V.I., Danilyuk A.F., Lugov-skoi A.A. Observation of water dimers in nanopores of silicon aerogel // J. Exp. Theor. Phys. Lett. 2015. V. 102. P. 32–35.
20. Nara H., Tanimoto H., Tohjima Y., Mukai H., Nojiri Y., Katsumata K., Rella C.W. Effect of air composition (N2, O2, Ar, and H2O) on CO2 and CH4 measurement by wavelength-scanned cavity ring-down spectroscopy: Calibration and measurement strategy // Atmos. Meas. Tech. 2012. V. 5. P. 2689–2701.
21. Rosenmann L., Hartmann J.M., Perrin M.Y., Taine J. Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300–2400-K temperature range // Appl. Opt. 1988. V. 27, N 18. P. 3902–3907.
22. Rosenmann L., Perrin M.Y., Hartmann J.M., Taine J. Diode-laser measurements and calculations of CO2-line-broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K // J. Quant. Spectrosc. Radiat. Transfer. 1988. V. 40, N 5. P. 569–516.