Vol. 30, issue 11, article # 5
Copy the reference to clipboard
Abstract:
An atom-atom interaction potential for H2O–A system is proposed in the form which depends on the normal coordinates q of H2O molecule. The vibrational and rotational contributions in this potential are calculated for H2O–He and H2O–Ar systems. It is shown that the excitation of the stretching modes of the vibrations in H2O molecule leads to an increase in the calculated broadening coefficients γ. In the case of broadening by He, γ increases by 15% for the lines with the rotational quantum number Ka = 9 of the lower state in the transition. In the case of broadening by Ar, this increase is 4%.
Keywords:
atom-atom potential, H2O–He, H2O–Ar, collisional broadening
References:
- Starikov V.I., Petrova T.M., Solodov A.M., Solodov A.A. Effective potentials for H2O–He and H2O–Ar systems. Isotropic induction – dispersion potentials // Eur. Phys. J. D. 2017. DOI: 10.1140/epjd/e2017-70685-9.
- Girshfelder Dzh.O., Kurtis Ch.F., Bred R. Molekuljarnaja teorija gazov i zhidkostej. M.: Izd-vo inostr. lit-ry, 1961. 929 p.
- Labani B., Bonamy J., Robert D., Hartmann J.-M., Taine J. Collisional broadening of rotation-vibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions// J. Chem. Phys. 1986. V. 84, N 21. P. 4256–4267.
- Neshyba S.P., Gamache R.R. Improved line-broadening coefficients for asymmetric rotor molecules with application to ozone line broadened by nitrogen //J. Quant. Spectrosc. Radiat. Transfer. 1993. V. 50, N 5. P. 443–453.
- Starikov V.I. Vibration-rotation interaction potential for H2O–A system // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 155. P. 49–56.
- Hoy A.R., Mills I.M., Strey G. Anharmonic force constant calculations // Mol. Phys. 1972. V. 24, N 6. P. 1265–1290.
- Aliev M.R., Watson J.K.J. Higher-order effects in the vibration-rotation spectra of semirigid molecules // Molecular Spectroscopy: Modern Research / K.N. Rao (ed.). London: Academic press, 1985. V. III. P. 1–67.
- Camy-Peyret C., Flaud J.M. Vibration-rotation dipole moment operator for asymmetric rotors // Mol. Spectrosc.: Mod. Res. / K.N. Rao (ed.). London: Academic press, 1985. V. III. P. 69–110.
- Bykov A.D., Sinica L.N., Starikov V.I. Jekcperimental'nye i teoreticheskie metody v spektroskopii molekul vodjanogo para. Novosibirsk: Izd-vo SO RAN, 1999. 376 p.
- Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Vibrational dependence of an intermolecular potential for H2O–He system // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 241–253.
- Petrova T.M., Solodov A.M., Solodov A.A., Stari-kov V.I. Measurements and calculations of Ar-broadening and shifting parameters of water vapor transitions of n1 + n2 + n3 band //J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 148. P. 116–126.
- Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. Phys. (Paris). 1979. V. 40. P. 923–943.
- Bykov A.D., Lavrent'eva N.N., Sinica L.N. Vychislenie rezonansnyh funkcij dlja real'nyh traektorij // Optika atmosf. i okeana. 1992. V. 5, N 11. P. 1127–1132.
- Steyert D.W., Wang W.F., Sirota J.M., Donahue N.M., Reuter D.C. Hydrogen and helium pressure broadening of water transitions in the 380–600 cm–1 region // J. Quant. Spectrosc. Radiat. Transfer. 2004. V. 83, N 2. P. 183–191.
- Poddar P., Mitra S., Biswas D., Ghosh P.N., Ray B. Diode laser spectroscopy of He, N2 and air broadened water vapour transitions belonging to the 2n1 + n2 + n3 band // Mol. Phys. 2010. V. 108, N 15. P. 1957–1964.
- Lucchesini A., Gozzini S., Gabbanini C. Water vapor overtones pressure line broadening and shifting measurements // Eur. Phys. J. D. 2000. V. 8, N 2. P. 223–226.
- Grossmann B.E., Browell E.V. Water-vapor line broadening and shifting by air, nitrogen, oxygen, and argon in the 720-nm wavelength region // J. Mol. Spectrosc. 1989. V. 138, N 2. P. 562–595.
- Claveau C., Henry A., Hurtmans D., Valentin A. Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2140 cm–1 // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 68, N 3. P. 273–298.