Vol. 30, issue 07, article # 11

Fomin B. A., Kolokutin G. E. Effective parameterizations of the atmospheric ozone absorption of biologically active UV radiation. // Optika Atmosfery i Okeana. 2017. V. 30. No. 07. P. 621–627. DOI: 10.15372/AOO20170711 [in Russian].
Copy the reference to clipboard

Abstract:

A method for parameterizations of the absorption of UV radiation by atmospheric ozone is described. Parameterizations are proposed for computer modeling of tropospheric fluxes of UV–A and UV–B radiation and modified fluxes of biologically active UV radiation in medical applications (for the analysis of vitamin D formation and risk of erythema, cancer, and cataracts). The parameterizations allow solution of the UV radiation transfer equations at the only effective spectral point to obtain integral fluxes in the 280–400 nm range (taking into account the spectral factors characterizing biological effects). When using the parameterizations, the characteristic errors in the calculations of the fluxes in the clear and cloudy troposphere are ~ 3–5%. The use of these parameterizations is relevant for fast radiation models, for example for on-line modeling of UV radiation fluxes for medical purposes. This method can be used to improve the accuracy of radiation codes in general atmospheric circulation models, radiation-chemical models, etc.

Keywords:

UV radiation, ozone absorption, radiation models, medical applications

References:

  1. Juzeniene A., Brekke P., Dahlback A., Andersson-Engels S., Reichrath J., Moan K., Holick M.F., Grant W., Moan J. Solar radiation and human health // Rep. Prog. Phys. 2011. V. 74, N 6. P. 1–56.
  2. Chubarova N., Zhdanova Y., Nezval Y. A new parameterization of the UV irradiance altitude dependence for clear-sky conditions and its application in the on-line UV tool over Northern Eurasia // Atmos. Chem. Phys. 2016. V. 16. P. 11867–11881. DOI: 10.5194/acp-16-11867-2016.
  3. Sukhodolov T., Rozanov E., Ball W., Bais A., Tourpali K., Shapiro A., Telford P., Smyshlyaev S., Fomin B., Sander R., Bossay S., Bekki S., Marchand M., Chipperfield M., Dhomse S., Haigh J., Peter T., Schmutz W. Evaluation of the simulated photolysis rates and their response to solar irradiance variability // J. Geophys. Res. Atmos. D. 2016. V. 121, N 10. P. 6066–6084.
  4. Madronich S., Flocke S. Theoretical estimation of biologically effective UV radiation at the Earth’s // Solar Ultraviolet Radiation–Modeling, Measurements and Effects surface / Ed. by С.S. Zerefos, A.F. Bais. Springer, 1997. V. 52. P. 23–48.
  5. Liou K.N. An Introduction to Atmospheric Radiation. V. 84. Boston: Academic Press, 2002. 2nd ed. 583 p.
  6. Hess M., Koepke P. Modelling UV irradiance on arbitrary oriented surfaces: Effect of sky obstructions // Atmos. Chem. Phys. 2008. V. 8. P. 3583–3591.
  7. Ambartsumian V. The effect of the absorption lines on the radiative equilibrium of the outer layers of the stars // Publ. Obs. Astron. Univ. Leningrad, 1936. V. 6. P. 7–18.
  8. Lacis A.A., Oinas V. A description of the correlated k-distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres // J. Geophys. Res. D. 1991. V. 96, N 5. P. 9027–9063.
  9. Fomin B.A., Correa M.P. A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere: 2. FKDM, fast k-distribution model for the shortwave // J. Geophys. Res. D. 2005. V. 110, N 2. DOI: 10.1029/2004JD005163.
  10. McClatchey R.A., Fenn R.W., Selby J.E.A., Voltz F.E., Garing J.S. Optical properties of the atmosphere. Air Force Cambridge Research Laboratories, 1971. 108 p.
  11. Molina L.T., Molina M.J. Absolute absorption cross sections of ozone in the 185- to 350-nm wavelength range // J. Geophys. Res. D. 1986. V. 91, N 13. P. 14501–14508.
  12. Erythema reference action spectrum and standard erythema dose. Joint ISO/CIE Standard. ISO 17166:1999/CIE S007-1998.
  13. Sterenborg H.J.C.M., Thomsen C.M., Jacques S.L., Motamedi M. In vivo autofluorescence of an unpigmented melanoma in mice. Correlation of spectroscopic properties to microscopic structure // Melanoma Res. 1995. V. 5, N 4. P. 211–216.
  14. Setlow R.B., Grist E., Thompson K., Woodhead A.D. Wavelength effective in induction of malignant melanoma // Proc. Natl. Acad. Sci. USA. 1993. V. 90, N 14. P. 6666–6670.
  15. de Gruijl F.R., Sterenborg H.J., Forbes P.D., Davies R.E., Cole C., Kelfkens G., van Weelden H., Slaper H., van der Leun J.C. Wavelength dependence of skin cancer induction by ultraviolet irradiation of albino hairless mice // Cancer Res. 1993. V. 53, N 1. P. 53–60.
  16. Boulion R., Eisman J., Garabedian M., Holick M., Kleinschmidt J., Suda T., Terentskaya I., Webb A. Action spectrum for production of previtamin D3 in human skin // Technical Report 174. Vienna: CIE, 2006. 16 p.
  17. Oriowo O.M., Cullen A.P., Chou B.R., Sivak J.G. Action spectrum and recovery for in vitro UV-induced cataract using whole lenses // Invest. Ophtalmol. Vis. Sci. 2001. V. 42. P. 2596–2602.
  18. Daubeny C. On the action of light upon plants, and of plants upon the atmosphere // Phil. Trans. Roy. Soc. Lond. 1836. V. 126. P. 149–175.
  19. Fomin B.A., Mazin I.P. Model for an investigation of radiative transfer in cloudy atmosphere // Atmos. Res. 1998. V. 47–48. P. 127–153.