Vol. 30, issue 05, article # 4

Geints Yu. E., Panina E. K., Zemlyanov A. A. Peculiarities of light absorption by an ensemble of microcapsules. // Optika Atmosfery i Okeana. 2017. V. 30. No. 05. P. 383–387. DOI: 10.15372/AOO20170504 [in Russian].
Copy the reference to clipboard

Abstract:

Specific features of scattering and absorption of laser radiation by an ensemble of two identical microcapsules are theoretically investigated. Each capsule is modelled by a two-layered spherical micron-sized particle consisting of water core and light absorbing polymer shell. By virtue of the numerical electrodynamics technique it is shown that the internal particles structure, as well as their mutual arrangement affect the character of the spatial distribution and amplitude characteristics of the power absorbed. The highest values of the absorbed power density in the microcapsule dimer could be achieved if the particles are displaced relative to each other by a distance of about diameter (strongly absorbing particles) or if the particles are in the geometric shadow of each other (weak absorption).

Keywords:

microcapsules, ensemble of particles, absorption of optical radiation

References:

  1. Iler R.K. Multilayers of colloidal particles // J. Colloid Interface Sci. 1966. V. 21, N. 6. P. 569–594.
  2. Decher G., Hong J.D. Buildup of ultrathin multilayer films by a self-assembly process. 1. Consecutive adsorption of anionic and cationic bipolar amphiphiles oncharged surfaces // Macromol. Chem. Sym. 1991. V. 46. P. 321–327.
  3. Sukhorukov G.B., Donath E., Davis S., Lichtenfeld H., Caruso F., Popov V.I., Mohwald H. Stepwise polyalectrolyte assembly on particles surface: A novel approach to colloid design // Polym. Adv. Technol. 1998. V. 9, N 10–11. P. 759–767.
  4. Donath E., Sukhorukov G.B., Caruso F., Davis S.A., Mohwald H. Nowel hollow polymer shells by colloid-templated assemble of polyelectrolytes // Angew. Chem. Int. Ed. 1998. V. 37. P. 2201–2205.
  5. Timin A.S., Gao H., Voronin D.V., Gorin D.A., Sukhorukov G.B. Inorganic/organic multilayer capsule composition for improved functionality and external triggering // Adv. Mater. Interfaces. 2016. 1600338. DOI: 10.1002/admi.201600338.
  6. Miyazawa K., Yajima I., Kaneda I., Yanaki T. Preparation of a new soft capsule for cosmetic // J. Cosmet. Sci. 2000. V. 51. P. 239–252.
  7. Langer R., Tirrell D.A. Designing materials for biology and medicine // Nature (Gr. Brit.). 2004. V. 428. P. 487–492.
  8. Galanzha E.I., Weingold R., Nedosekin D.A., Sarimollaoglu M., Kuchyanov A.S., Parkhomenko R.G., Plekhanov A.I., Stockman M.I., Zharov V.P. // Spaser as novel versatile biomedical tool. 2015. arXiv:1501.00342.
  9. Rosenberg M., Lee S.-J. Water-insoluble, whey protein-based microspheres prepared by an all-aqueous process // J. Food Sci. 2004. V. 69. P. FEP50–FEP58. DOI: 10.1111/j.1365-2621.2004.tb17867.x.
  10. Skirtach A.G., Javier A.M., Kreft O., Köhler K., Alberola A.P., Möhwald H., Parak W.J., Sukhorukov G.B. Laser-induced release of encapsulated materials inside living cells // Angew. Chem. Int. Ed. 2006. V. 45, N 28. P. 4612–4617.
  11. Angelatos A.S., Radt B., Caruso F. Light-responsive polyelectrolyte/gold nanoparticle microcapsules // J. Phys. Chem. B. 2005. V. 109, N 7. P. 3071–3076.
  12. Skirtach A.G., Antipov A.A., Shchukin D.G., Sukhorukov G.B. Remote activation of capsules containing Ag nanoparticles and IR dye by laser light // Langmuir. 2004. V. 20, N 17. P. 6988–6992.
  13. Gao H., Wen D., Tarakina N.V., Liang J., Bushbya A.J., Sukhorukov G.B. Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules // Nanoscale. 2016. V. 8. P. 5170–5180.
  14. Terakawa M., Mitsuhashi T., Shinohara T., Shimizu H. Near-infrared femtosecond laser-triggered nanoperforation of hollow microcapsules // Opt. Express. 2013. V. 21, N 10. P. 12604–12610.
  15. Hashimoto K., Irie H., Fujishima A. TiO2 photocatalysis: A historical overview and future prospects // Japan. J. Appl. Phys. 2005. V. 44, N 12. P. 8269–8285.
  16. Gejnc Ju.Je., Zemljanov A.A., Panina E.K. Modelirovanie prostranstvennogo raspredelenija pogloshhennoj jenergii lazernogo izluchenija vnutri sfericheskih mikrokapsul // Kvant. jelektron. 2016. V. 46, N 9. P. 815–820.
  17. Taflove A., Hagness S. Computational electrodynamics: The finite-difference time-domain method. Boston: Arthech House Pub., 2000. 852 p.
  18. Born M., Vol'f Je. Osnovy optiki. M.: Nauka, 1970. 856 p.
  19. Geints Yu.E., Zemlyanov A.A., Panina E.K. The influence of spherical microcapsules on the spatial distribution of absorbed laser radiation power // Atmos. Ocean. Opt. 2016. V. 29, N 5. P. 477–481.
  20. Chen Z., Taflove A., Backman V. Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique // Opt. Express. 2004. V. 12, N 7. P. 1214–1220.