Vol. 3, issue 11, article # 1

Zuev V. V., Petrova A. I. Refined ATCF model for absorption line collisional broadening and shift taking into account finite impact parameter and effect of internal state upon relative velocity. // Atmospheric and oceanic optics. 1990. V. 3. No. 11. P. 1019-1033.    PDF
Copy the reference to clipboard

Abstract:

Based on an analysis of elastic collisions and the use of the dependence of the absorption molecular velocity (ν1) and the impact parameter on the rotational quantum number Ji the semiclassical ATCF model for line shifts and broadening in atmospheric gases has been refined. The CO2 molecule has been taken as a point of reference to compare the calculated line half-widths for self-broadened atmospheric CO2 and the pressure-broadened N2 and 02 linewidths obtained by the refined ATCF model and the currently popular Robert-Bonamy (RB) model with the large quantity of experimental data presently available.
For small and especially large values of Ji good quantitative agreement of our results with experiment has been found, which is achieved without any fitting conditions in contrast to the RB approach. Within the framework of the proposed ATCF model, the line center shifts have been calculated taking into account certain factors which influence this parameter.

References:

1. P.W. Anderson, Phys. Rev. 76, 64 (1949).
2. C.J. Tsao and B. Curnutte, JQSRT 2, 41 (1962).
3. Frost, J. Phys. B: Atom. Molec. Phys. 9, No. 6, 1001 (1976).
4. D. Robert and J. Bonamy, J. de Physique 40, No. 10, 923 (1979).
5. L. Rosenmann, J.M. Hartmann, M.Y. Perrin, and J. Taine, J. Chem. Phys 88(5), 2999 (1988).
6. J.S. Murphy and J.E. Boggs, J. Chem. Phys. 47, No. 2, 961 (1967).
7. M.R. Cherkasov, Opt. Spektrosk. 42, 45 (1977).
8. R.D. Sharma and W.R. Caledonia, J. Chem. Phys. 54, 434 (1977).
9. Reference Book of Physico-Chemical Values (Khimiya, Leningrad, 1972).
10. R.P. Srivastava and H.R. Zaidi, Cam. J. Phys. 55, 533 (1977).
11. G.A. Korn and T.M. Korn, Mathematical Handbook for Scientists and Engineers (Nauka, Moscow, 1973).
12. C. Cousin, R.Le Doucen, J.P. Houdean, C. Boulet, and A. Henry, Appl. Opt. 25, 2434 (1986).
13. V. Malsthy Devi, B. Fridonich, G.D. Jones, and D.G.S. Snyder, J. Mol. Spectr. 105, 61 (1984).
14 M. Margottin-Maclou, P. Dahoo, A. Henry, A. Valentin, and L. Henry, J. Mol. Spectr. 131, 21 (1988).
15. Krishnaji and S.L. Srivastava, J. Chem. Phys. 41, No. 8, 2266 (1964).
16. M.O. Bulanin, V.P. Bulychev, and E.B. Khodos, Opt. and Spektrosk. 48(5), 883 (1980).
17. D. Robert, M. Girand, and L. Galatry, J. Chem. Phys. 51, 2192 (1969).
18. L. Losenraarm, M.Y. Perrin, and J. Taine, J. Chem. Phys. 88, 2995 (1988).
19. S.R. Drayson and C. Young, JQSET 7, 143 (1967).
20. J.T.K. McCubbin and T.R. Mooney, JQSRT 8, 1255 (1966).
21. E. Arie, N. LaCome, and C. Rossetti, Can. J. Phys. 50, 1800 (1972).
22. D. Dumitras, R. Alexandresen, and N. Comanicin, Rev. Rom. Phys. 21, 301 (1976).
23. М.O. Bulanin, V.Р. Bulychev, and Е.В. Khodos, Opt. Spektrosk. 48, 403 (1980).
24. R.S. Eng and A.W. Hants, J. Mol. Spectrosc. 74, 331 (1979).
25. M.S. Abubakar and J.K. Shaw, Appl. Opt. 25, 1996 (1986).
26. L.S. Rothman, Appl. Opt. 20, 791 (1981).
27. P. Areas, E. Arle, and C. Boulet, J. Chem. Phys. 73(10), 5383 (1980).
28. Yu.G. Agalakov, M.O. Bulanin, V.V. Bertsev, A.P. Burtsov, and Yu.A. Rubinov, Opt. Spectr. 53, No. 3, 493 (1985).