Vol. 29, issue 06, article # 10

Rudyak V. Ya., Krasnolutskii S. L. Nanoparticle thermal diffusion simulation in dense gases and fluids by the molecular dynamics method. // Optika Atmosfery i Okeana. 2016. V. 29. No. 06. P. 508–511. DOI: 10.15372/AOO20160610 [in Russian].
Copy the reference to clipboard

Abstract:

This paper is devoted to studying the thermal diffusion of nanoparticles in dense gases and liquids by the method of molecular dynamics with Rudyak–Krasnolutskii nanoparticle–molecule potential and Rudyak–Krasnolutskii–Ivanov nanoparticle–nanoparticle potential. Thermal diffusion and binary diffusion coefficients were calculated with the help of the fluctuation-dissipation theorem. Nanofluids simulated consisted of argon as а carrier medium and aluminum nanoparticles. Dependences of the thermal diffusion and Soret coefficients of nanoparticles on their diameter and volume concentration were obtained. For small diameter nanoparticles (1–4 nm) thermal diffusion coefficient showed a significant dependence on their size.

Keywords:

thermal diffusion coefficient, Soret coefficient, nanoparticles, nanofluids, diffusion, aerosol

References:

  1. Rudjak V.Ja. Sovremennoe sostojanie issledovanij vjazkosti nanozhidkostej // Vestn. NGU. Fizika. 2015. V. 10, N 1. P. 5–22.
  2. Kumar P.M., Kumar J., Tamilarasan R., Sendhilnathan S., Suresh S. Review on nanofluids theoretical thermal conductivity models // Engin. J. 2015. V. 19, iss. 1. P. 67–83.
  3. Rudjak V.Ja., Krasnoluckij S.L. Jeffektivnyj kojefficient vjazkosti razrezhennyh nanogazovzvesej // Optika atmosf. i okeana. 2004. V. 17, N 5–6. P. 468–475.
  4. Rudjak V.Ja., Krasnoluckij S.L., Nasibulin A.G., Kauppinen E.I. O metodah izmerenija kojefficienta diffuzii i razmerov nanochastic v razrezhennom gaze // Dokl. AN. 2002. V. 386, N 5. P. 624–627.
  5. Rudyak V.Ya., Dubtsov S.N., Baklanov A.M. Measurements of the temperature dependent diffusion coefficient of nanoparticles in the range of 295–600 K at atmospheric pressure // J. Aerosol Sci. 2009. V. 40, iss. 10. P. 833–843.
  6. Rudjak V.Ja., Krasnoluckij S.L. O termodiffuzii nanochastic v gazah // Zh. tehn. fiz. 2010. V. 80, issue 8. P. 49–52.
  7. Piazza R., Parola A. Thermophoresis in colloidal suspensions // J. Phys. Condens. Matter. 2008. V. 20. 153102 (18 p.).
  8. Rudyak V.Ya., Krasnolutskii S.L., Ivanov D.A. Molecular dynamics simulation of nanoparticle diffusion in dense fluids // Microfluid. Nanofluid. 2011. V. 11, N 4. P. 501–506.
  9. Rudyak V.Ya., Krasnolutskii S.L. Dependence of the viscosity of nanofluids on nanoparticle size and material // Phys. Lett. A. 2014. V. 378. P. 1845–1849.
  10. Rudjak V.Ja., Krasnoluckij S.L. Modelirovanie kojefficienta vjazkosti nanozhidkosti metodom molekuljarnoj dinamiki // Zh. tehn. fiz. 2015. V. 85, issue 6. P. 9–17.
  11. Rudyak V.Ya., Krasnolutskii S.L. The interaction potential of dispersed particles with carrier gas molecules // Proc. 21st Int. Symp. on Rarefied Gas Dynamics. Toulouse, Gépadués-Éditions, 1999. V. 1. P. 263–270.
  12. Rudjak V.Ja., Krasnoluckij S.L., Ivanov D.A. O potenciale vzaimodejstvija nanochastic // Dokl. AN. 2012. V. 442, N 1. P. 54–56.
  13. Girshfel'der D., Kertiss Ch., Bjord R. Molekuljarnaja teorija gazov i zhidkostej. M.: Izd-vo inostr. lit-ry, 1961. 929 p.
  14. Heinz H., Vaia R.A., Farmer B.L., Naik R.R. Accurate simulation of surfaces and interfaces of face-centered cubic metals using 12–6 and 9–6 Lennard-Jones potentials // J. Phys. Chem. C. 2008. V. 112, N 44. P. 17281–17290. DOI: 10.1021/jp801931d.
  15. Zubarev D.N. Neravnovesnaja statisticheskaja termodinamika. M.: Nauka, 1971. 414 p.
  16. Landau L.D., Lifshic E.M. Kurs teoreticheskoj fiziki v 10 t. V. 6. Gidrodinamika. M.: FIZMATLIT, 2001. 736 p.
  17. Rudjak V.Ja., Belkin A.A., Ivanov D.A., Egorov V.V. Modelirovanie processov perenosa na osnove metoda molekuljarnoj dinamiki. I. Kojefficient samodiffuzii // Teplofiz. vysok. temperatur. 2008. V. 46, N 1. P. 35–45.
  18. Normann G.Je., Stegajlov V.V. Metod klassicheskoj molekuljarnoj dinamiki: zamysel i real'nost' // Nanostruktury. Matematicheskaja fizika i modelirovanie. 2011. V. 4, N 1. P. 31–59.
  19. Normann G.Je., Stegajlov V.V. Stohasticheskaja teorija metoda klassicheskoj molekuljarnoj dinamiki // Mat. modelir. 2012. V. 24, N 6. P. 3–44.
  20. Bashkirov A.G. Neravnovesnaja statisticheskaja mehanika geterogennyh sistem. III. Brounovskoe dvizhenie krupnoj chasticy v neodnorodnoj zhidkosti // Teor. i mat. fiz. 1981. V. 49, N 1. P. 140–144.
  21. Nicolis G. On the evaluation of the thermal-diffusion coefficient of heavy particles using a theory of Brownian motion in a Nonuniform medium // J. Chem. Phys. 1965. V. 43. P. 1110–13.