Vol. 29, issue 05, article # 12

Geints Yu. E., Zemlyanov A. A., Panina E. K. The influence of spherical microcapsules on spatial distribution of absorbed laser radiation power
 
. // Optika Atmosfery i Okeana. 2016. V. 29. No. 05. P. 443–448. DOI: 10.15372/AOO20160512 [in Russian].

Copy the reference to clipboard

Abstract:

Particular properties of formation of the optical field in the composite spherical microcapsules of different size consisting of a polymer absorbing shell and a non-absorbing liquid core are presented. The numerical simulation shows that changes in the thickness of the shell, grown on the core fixed radius, and the coefficient of its own radiation absorption determine the nature of spatial distribution and amplitude characteristics of the absorbed power. Variations in these parameters allow changing position and peak values of the areas of the effective absorption volume of the particle and, consequently, create conditions favourable for opening the shells in the appropriate spatial areas. This is important for the solution of practical tasks associated with the problem of release of the contents of the microcapsules.

Keywords:

microcapsule, method of computational electrodynamics

References:


  1. Koker S. De, Lambrecht B.N., Willart M.A., Kooyk Y. Van, Grooten J., Vervaet C., Remon J.P., De Geest B.G. Designing polymeric particles for antigen delivery // Chem. Soc. Rev. 2011. Iss. 40. P. 320–329.

  2. Cock L.J., Koker S. De Geest B.G., Grooten J., Vervaet C., Remon J.P., Sukhorukov G.B., Antipina M.N. Polymeric multilayer capsules in drug delivery // Angew. Chem. Int. Ed. 2010. V. 49, iss. 39. P. 6954–6973.

  3. Borodina T.N. Rumsh L.D., Kunizhev S.M., Suhorukov G.B., Vorozhdov G., Fel'dman B.M., Markvicheva E.A. Polijelektrolitnye mikrokapsuly kak sistemy dostavki biologicheski aktivnyh veshhestv // Biomed. him. 2007. V. 53, N 5. P. 557–565.

  4. Gorin D.A., Shhukin D.G., Mihajlov A.I., Kjoler K., Sergeev S.A., Portnov S.A., Taranov I.V., Kislov V.V., Suhorukov G.B. Vlijanie mikrovolnovogo izluchenija na polimernye mikrokapsuly s neorganicheskimi nanochasticami // Pis'ma v ZhTF. 2006. V. 32, issue 4. P. 45–50.

  5. Bukreeva T.V., Parahonskij B.V., Skirtach A.G., Susha A.S., Suhorukov G.B. Poluchenie polijelektrolitnyh mikrokapsul s nanochasticami serebra i zolota v obolochke i distancionnoe razrushenie takih kapsul vozdejstviem lazernogo izluchenija // Kristallografija. 2006. V. 51, N 5. P. 183–189.

  6. Skirtach A.G., Dejugnat C., Braun D., Susha A.S., Rogach A.L., Parak W.J., Möhwald H., Sukhorukov G.B. The role of metal nanoparticles in remote release of encapsulated materials // Nano Lett. 2005. V. 5, iss. 7. P. 1371–1377.

  7. Yee K.S. Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media // IEEE Trans. Antennas Propag. 1966. AP-14. P. 302–307.

  8. Taflove A., Hagness S. Computational electrodynamics: The finite-difference time-domain method. Boston: Arthech House Pub., 2000. 852 p.

  9. Askadskij A.A., Matveev Ju.I. Himicheskoe stroenie i fizicheskie svojstva polimerov. M.: Himija, 1983. 248 p.

  10. Gejnc Ju.Je., Zemljanov A.A., Panina E.K. Nanofotonika izolirovannyh sfericheskih chastic // Izv. vuzov. Fiz. 2010. V. 50, N 4. P. 76–85.

  11. URL: http://www.its.caltech.edu/~seheon/FDTD.html


  12.