Vol. 29, issue 04, article # 6

Marakasov D. A. Estimation of mean wind velocity from correlations of centers of gravity shifings for non-coherent sources in the turbulent atmosphere. // Optika Atmosfery i Okeana. 2016. V. 29. No. 04. P. 294–299. DOI: 10.15372/AOO20160406 [in Russian].
Copy the reference to clipboard

Abstract:

The article considers the problem of wind velocity estimation from the statistics of the integral characteristics of the images of incoherent sources in the turbulent atmosphere, namely, the received power and the bias vector of the center of gravity of the image. In the framework of the first approximation of the method of small perturbations, expressions for the mutual correlation functions of these characteristics and the bias vectors for a couple of point sources registered through a couple of receivers are derived. It is shown the correlation maxima are shifted from the origin of coordinates and the shift value depends on the wind velocity. The possibility of estimation of the vector of transverse velocity averaged over the optical path from the shape of correlation functions and shifts of correlation maxima is shown.

Keywords:

incoherent source, image, integral wind velocity, mutual correlation function, turbulence

References:

  1. Johnston R., Dainty C., Wooder N., Lane R. Generalized scintillation detection and ranging results obtained by use of a modified inversion technique // Appl. Opt. 2002. V. 41, N 32. P. 6768–6772.
  2. Kluckers V.A., Wooder N.J., Nicholls T.W., Adcock M.J., Munro I., Dainty J.C. Profiling of atmospheric turbulence strength and velocity using generalized SCIDAR technique // Astron. Astrophys. Suppl. Ser. 1998. V. 130, iss. 1. P. 141–155.
  3. Prieur J.-L., Avila R., Daigne G., Vernin J. Automatic determination of wind profiles with generalized SCIDAR // Pub. Astron. Soc. Pac. 2004. V. 116, N 822. P. 778–789.
  4. Cheon Y., Muschinski A. Closed-form approximations for the angle-of-arrival variance of plane and spherical waves propagating through homogeneous and isotropic turbulence // J. Opt. Soc. Amer. A. 2007. V. 24, N 2. P. 415–422.
  5. Cheon Y., Hohreiter V., Behn M., Muschinski A. Angle-of-arrival anemometry by means of a large-aperture Schmidt–Cassegrain telescope equipped with a CCD camera // J. Opt. Soc. Amer. A. 2007. V. 24, N 11. P. 3478–3492
  6. Banakh V.A., Marakasov D.A. Wind profiling based on the optical beam intensity statistics in a turbulent atmosphere // J. Opt. Soc. Amer. A. V. 24, N 20. P. 3245–3254.
  7. Afanas'ev A.L., Banah V.A., Rostov A.P. Lokalizacija turbulentnyh potokov po fluktuacijam intensivnosti prosvechivajushhego lazernogo izluchenija // Optika atmosf. i okeana. 2008. V. 21, N 7. P. 640–647.
  8. Smalikho I.N., Banakh V.A. Estimation of aircraft wake vortex parameters from data measured with 1.5 mkm coherent Doppler lidar // Opt. Lett. 2015. V. 40, N 14. P. 3408–3411.
  9. Smalikho I.N., Banakh V.A., Holzäpfel F., Rahm S. Method of radial velocities for the estimation of aircraft wake vortex parameters from data measured by coherent Doppler lidar // Opt. Express. 2015. V. 23, N 19. P. A1194–A1207.
  10. Banakh V.A., Smalikho I.N., Falits A.V. Lidar investigation of the atmospheric boundary layer dynamics in the coastal zone of Lake Baikal // Proc. SPIE. 2015. V. 9680. P. 968039-1–968039-5.
  11. Smalikho I.N., Banakh V.A. Estimation of aircraft wake vortex parameters from data measured by a Stream Line lidar // Proc. SPIE. 2015. V. 9680. P. 968037-1–968037-7.
  12. Smaliho I.N., Banah V.A., Holzäpfel F., Rahm S. Ocenivanie parametrov samoletnyh vihrej iz massiva radial'nyh skorostej, izmerennyh kogerentnym doplerovskim lidarom // Optika atmosf. i okeana. 2015. V. 28, N 8. P. 742–750.
  13. Banakh V.A., Smalikho I.N. Aircraft wake vortex parametrization based on 1.5-mcm coherent Doppler lidar data // Proc. 27th Int. Laser Radar Conf. [Jelektronnyj resurs]. 05–10 July, 2015. New York, USA. Abstracts. PP. PS-B2.0201–PS-B2.0204.
  14. Banakh V.A., Smalikho I.N., Rahm S. Estimation of refractive index structure characteristic of air from coherent Doppler wind lidar data // Opt. Lett. 2014. V. 39, N 15. P. 4321–4324.
  15. Banakh V.A., Smalikho I.N., Rahm S. Determination of the optical turbulence intensity from data measured by a coherent Doppler lidar // Proc. SPIE. V. 9292. 20th Int. Symp. on “Atmospheric and Ocean Optics. Atmospheric  Physics”,  June  23–27,  2014.  P. 92921U.
  16. Clifford S.F., Ochs G.R., Wang T-i. Optical wind sensing by observing the scintillations of a random scene // Appl. Opt. 1975. V. 14, N 12. P. 2844–2850.
  17. Marakasov D.A. Vosstanovlenie profilja skorosti vetra po fluktuacijam intensivnosti lazernogo puchka v priemnom teleskope // Optika atmosf. i okeana. 2010. V. 23, N 4. P. 304–307.
  18. Spravochnik po special'nym funkcijam s formulami, grafikami i matematicheskimi tablicami / Pod red. M. Abramovic, I. Stigan. M.: Nauka, 1979. 832 p.