Vol. 29, issue 04, article # 4

Arsen'yan T. I., Babanin E. A., Vokhnik O. M., Zotov A. M., Mardanov A. F., Sukhareva N. A. The mode convertion of the structurally stable vector beams propagating through free space optical channels. // Optika Atmosfery i Okeana. 2016. V. 29. No. 04. P. 276–284. DOI: 10.15372/AOO20160404 [in Russian].
Copy the reference to clipboard

Abstract:

The processes of rearrangement of structurally stable beams having axial symmetry in the free space data transmitting optical channels are investigated experimentally. The invariants of the structure transformation of the beam as the spatial code bearer are discussed. The estimation of correlation and dispersion parameters of the optical density modulation processes were carried out. The possibility of multiple difference in these characteristics in different directions perpendicular to the beam axis is indicated.

Keywords:

structurally stable beams, mode converters, Ince–Gaussian beams, free space optical channel

References:

  1. Leontovich M.A., Fok V.A. Issledovanija po rasprostraneniju radiovoln // Zh. jeksperim. i teor. fiz. 1946. V. 16, issue 7. P. 557–573.
  2. Abramochkin E.G., Volostnikov V.G. Sovremennaja optika gaussovyh puchkov. M.: Fizmatlit, 2010. 184 p.
  3. Volostnikov V.G. Metody sinteza kogerentnyh svetovyh polej. M.: Fizmatlit, 2015. 256 p.
  4. Born M., Vol'f Je. Osnovy optiki. M.: Nauka, 1973. 720 p.
  5. Titchmarsh E. Teorija funkcij. M.: Nauka, 1980. 464 p.
  6. Goncharenko A.M. Gaussovy puchki sveta. М.: URSS, 2005. 144 p.
  7. Landau L.D., Lifshic E.M. Kvantovaja mehanika. Nereljativistskaja teorija. M.: Fizmatlit, 2004. 800 p.
  8. Bandres M.A., Gutiérrez-Vega J.C. Ince–Gaussian beams // Opt. Lett. 2004. V. 29, N 2. P. 144–146.
  9. Bandres M.A., Gutiérrez-Vega J.C. Ince–Gaussian modes of the paraxial wave equation and stable resonators // J. Opt. Soc. Amer. A. 2004. V. 21, N 5. P. 873–880.
  10. Shuo Han, Yanqing Liu, Fang Zhang, Ying Zhou, Zhengping Wang, Xinguang Xu. Direct generation of subnanosecond Ince–Gaussian modes in microchip laser // IEEE Photon. J. 2015. V. 7, N 1. 4500206 (7 р.).
  11. O’Neil A.T., Courtial J. Mode transformations in terms of the constituent Hermite–Gaussian or Laguerre–Gaussian modes and the variable-phase mode converter // Opt. Commun. 2000. V. 181, N 1–3. P. 35–45.
  12. Zhou G., Zheng J. Vectorial structure of Hermite–Laguerre–Gaussian beam in the far field // Opt. Laser Technol. 2008. V. 40, N 6. P. 858–863.
  13. Berry M.V., Nye J.F., Wright F.J. The elliptic umbilic diffraction catastrophe // Phil. Trans. R. Soc. A. 1979. V. 291, N 1382. P. 453–484.
  14. Arnol'd V.I., Varchenko A.N., Gusejn-Zade S.M. Osobennosti differenciruemyh otobrazhenij. M.: Izd-vo MNCNMO, 2009. 303 p.
  15. Bandres M.A., Guizar-Sicairos M. Paraxial group // Opt. Lett. 2009. V. 34, N 1. P. 13–15.
  16. Getling A.V. Rayleigh–Benard convection: Structure and dynamics (advanced series in nonlinear dynamics). Singapore: World Scientific Publishing Co Pte Ltd, 1996. 245 p.
  17. Arsen'jan T.I., Suhareva N.A., Suhorukov A.P., Chugunov A.A. Indeks mercanij gaussovskih puchkov v srede s sil'noj turbulentnost'ju // Vestn. Moskovskogo un-ta. Issue. 3. Fizika, astronomija. 2014. N 4. P. 35–43.
  18. Arsen'jan T.I., Afanas'ev A.L., Banah V.A., Pisklin M.V., Rostov A.P., Suhareva N.A. Tenzornyj analiz dinamiki refrakcionnyh iskazhenij zondirujushhego opticheskogo puchka // Vestn. Moskovskogo un-ta. Issue 3. Fizika, astronomija. 2015. N 6. P. 76–85.
  19. Arsen'jan T.I., Suhareva N.A., Suhorukov A.P. Turbulentnye vozmushhenija lazernogo puchka v fazovom prostranstve // Vestn. Moskovskogo un-ta. Issue 3. Fizika, astronomija. 2014. N 1. P. 51–55.
  20. Ting Xu, Shaomin Wang. Propagation of Ince–Gaussian beams in a thermal lens medium // Opt. Commun. 2006. V. 265, N 1. P. 1–5.
  21. Nadgaran H., Servatkhah M. The effects of induced heat loads on the propagation of Ince–Gaussian beams // Opt. Commun. 2011. V. 284, N 22. P. 5329–5337.