Vol. 29, issue 02, article # 13

Beloplotov D. V., Trigub M. V., Tarasenko V. F., Evtushenko G. S., Lomaev M. I. Visualization of gasdynamic processes at a pulse-periodic discharge initiated by runaway electrons in atmospheric pressure air with a laser monitor. // Optika Atmosfery i Okeana. 2016. V. 29. No. 02. P. 157–161. DOI: 10.15372/AOO20160213 [in Russian].
Copy the reference to clipboard

Abstract:

Gasdynamic processes that take place at a pulse-periodic discharge initiated by runaway electrons in atmospheric pressure air were studied with a laser monitor based on a CuBr laser. Voltage pulses (U = 13 kV, FWHM is 10 ns, front duration is 4 ns, negative polarity, f = 60–3200 Hz) applied to a cone copper cathode with diameter of cone base, apex angle, and corner radius of cone apex of 6 mm, 30°, and 0.2 mm, respectively. A flat copper anode was located at a distance of 2 mm from the cathode. It was established that products of discharge plasma with copper vapors are transferred in radial direction along a surface of the flat anode during 2.5 ms to a distance of 24 mm. The temperature of air heated by the discharge in the moment of its expanding was ~ 1 × 103 K. It was shown that use of the laser monitor in transmitted light allows obtaining contrast images of optical inhomogeneities that arise at a gas discharge.

Keywords:

nanosecond pulse-periodic discharge, atmospheric pressure air, runaway electrons, schlieren method, laser monitor, copper bromide laser, metal vapor jets, colored mini jets

References:

  1. Low temperature plasma technology: Methods and applications / Ed. by Paul K. Chu, Xin Pei Lu. Boca Raton, London, New York: CRC Press. Taylor & Francis Group, 2014. 493 p.
  2. Low Temperature Plasma. Fundamentals, Technologies, and Techniques (2nd ed.) / Ed. by R. Hippler, H. Kersten, M. Schmidt, K.H. Schoenbach. Weinheim: Wiley, 2008. 945 p.
  3. Packan D.M. Repetitive nanosecond glow discharge in atmospheric pressure air. Stanford: Stanford University, 2003. 164 p.
  4. Runaway Electrons Preionized Diffuse Discharges / Ed. by V.F. Tarasenko. New York: Nova Science Publishers, Inc., 2014. 598 p.
  5. Tarasenko V.F., Beloplotov D.V., Lomaev M.I., Sorokin D.A. O nabljudenii v laboratornyh razrjadah, iniciiruemyh puchkom ubegajushhih jelektronov, mini-sprajtov i golubyh mini-struj // Optika atmosf. i okeana. 2014. V. 27, N 11. P. 1017–1019.
  6. Beloplotov D.V., Lomaev M.I., Tarasenko V.F. O prirode izluchenija golubyh i zelenyh struj v laboratornyh razrjadah, iniciiruemyh puchkom ubegajushhih jelektronov // Optika atmosf. i okeana. 2015. V. 28, N 4. P. 349–353; Beloplotov D.V., Lomaev M.I., Tarasenko V.F. On the nature of radiation of blue and green jets in laboratory discharges initiated by runaway electrons // Atmos. Ocean. Opt. 2015. V. 28, N 5. P. 476–480.
  7. Beloplotov D.V., Lomaev M.I., Sorokin D.A., Tarasenko V.F. Blue and green jets in laboratory discharges initiated by runaway electrons // J. Phys.: Conf. Series. 2015. V. 652. 012012.
  8. Miheev P.A., Shepelenko A.A., Kuprjaev N.V., Voronov A.I. Ljuminescencija atomov medi v poslesvechenii tlejushhego razrjada postojannogo toka v bystrom potoke azota // Sb. 3-j Mezhdunar. simpoz. po teor. i prikladnoj plazmohimii. Pljos. Ivanovo: IGHTU, 2002. V. 3. P. 138–141.
  9. Evtushenko G.S., Trigub M.V., Gubarev F.A., Evtushenko T.G., Torgaev S.N., Shiyanov D.V. Laser monitor for non-destructive testing of materials and processes shielded by intensive background lighting // Rev. Sci. Instrum. 2014. V. 85, N 3. 033111 (5 p.).
  10. Trigub M.V., Ogorodnikov D.N., Dimaki V.A. Issledovanie istochnika nakachki lazera na parah metallov s impul'snym zarjadom rabochej emkosti // Optika atmosf. i okeana. 2014. V. 27, N 12. P. 1112–1115.
  11. Dashinimaeva E.Z., Vlasov V.V., Evtushenko G.S., Trigub M.V. Ispol'zovanie lazernogo monitora v vizual'no-izmeritel'nom kontrole // Kontrol'. Diagnostika. 2014. N 11. P. 44–47.
  12. Rybka D.V., Trigub M.V., Sorokin D.A., Evtushenko G.S., Tarasenko V.F. Osobennosti koronnogo razrjada v vozduhe atmosfernogo davlenija pri modulirovannom impul'se naprjazhenija // Optika atmosf. i okeana. 2014. V. 27, N 4. P. 306–310; Rybka D.V., Trigub M.V., Sorokin D.A., Evtushenko G.S., Tarasenko V.F. Corona discharge in atmospheric pressure air when using modulated voltage pulses // Atmos. Ocean. Opt. 2014. V. 27, N 6. P. 582–586.
  13. Tao S., Cheng Z., Zheng N., Ping Y., Tarasenko V.F., Baksht E.Kh., Burachenko A.G., Shut’ko Y.V. Diffuse discharge, runaway electron, and X-ray in atmospheric air in an inhomogeneous electric field in repetitive pulsed mode // Appl. Phys. Lett. 2011. V. 98, N 2. 021503. 3 p.
  14. Shao T., Tarasenko V.F., Zhang C., Baksht E.K., Yan P., Shut’ko Y.V. Repetitive nanosecond-pulse discharge in a highly nonuniform electric field in atmospheric air: X-ray emission and runaway electron generation // Laser Part. Beams. 2012. V. 30, N 3. P. 369–378.