Vol. 29, issue 01, article # 10

Fedotov Yu. V., Bullo O. A., Belov M. L., Gorodnichev V. A. Stability of results of plant state detection by laser fluorescence method. // Optika Atmosfery i Okeana. 2016. V. 29. No. 01. P. 80-84. DOI: 10.15372/AOO20160110 [in Russian].
Copy the reference to clipboard

Abstract:

Laser fluorescence method of plant state detection is considered. Laboratory setup is described and analysis of plant fluorescence spectra excited at a wavelength of 532 nm are presented. It is shown that the measurement small series average of the fluorescence intensity ratio R at wavelengths of 685 and 740 nm is marked by high stability for different samples of a plant. Sum of confidential intervals of ratio R (for confidential probability 95%) in most cases is no more than difference of mean values of the ratio R for normal and stress states caused by various reasons.

Keywords:

laser fluorescence method, vegetation monitoring, fluorescence spectra, stability

References:

  1. Belasque J., Gasparoto M.C.G., Marcassa L.G. Detection of mecanical and disease stresses in citrus plants by fluorescence spectroscopy // Appl. Opt. 2008. V. 47, N 11. Р. 1922–1926.
  2. Cecchi G., Bazzani M., Pantani L. Fluorescence lidar method for remote monitoring of effects on vegetation // Proc. SPIE. 1995. V. 2585. Р. 49–56.
  3. Fateeva N.L., Matvienko G.G. Application of the method of laser-induced fluorescence // Proc. SPIE. 2004. V. 5232. Р. 652–657.
  4. Matvienko G., Timofeev V., Grishin A., Fateyeva N. Fluorescence lidar method for remote monitoring of effects on vegetation // Proc. SPIE. 2006. V. 6367. Р. 63670F-1–63670F-8.
  5. Grishaev M.V., Sal’nikova N.S. A setup for remote recording of the spectrum of laser-induced fluorescence from crowns of woody plants // Instrum. Experim. Techn. 2010. V. 53, N 5. P. 746–749.
  6. Fateeva N.L., Klimkin A.V., Bender O.V., Zotikova A.P., Jamburgov M.S. Issledovanie lazerno-inducirovannoj fluorescencii hvojnyh i listvennyh rastenij pri azotnom zagrjaznenii pochvy // Optika atmosf. i okeana. 2006. V. 19, N 2–3. P. 212–215.
  7. Gouveia-Neto A.S., da Silva E.A., Cunha P.C., OliveiraFilho R.A., Silva L.M.H., da Costa E.B., Câmara T.J.R., Willadino L.G. Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in vivo leaf tissue of biofuel species // Proc. SPIE. 2010. V. 7568. Р. 75680G-1–75680G-8.
  8. Luedeker W., Guenther K.P., Dahn H.-G. Laser induced fluorescence a tool for vegetation status- and stress- monitoring and optical aided agriculture // Proc. SPIE. 1997. V. 3059. Р. 63–75.
  9. Saito Y., Saito R., Nomura E., Kawahara T.D., Nomur A., Takaragaki S., Ida K., Takeda S. Performance check of vegetation fluorescence imaging lidar through in vivo and remote estimation of chlorophyll concentration inside plant leaves // Opt. Rev. 1999. V. 6, N 2. Р. 155–159.
  10. Corp L.A., McMurtrey J.E., Middleton E.M., Mulchi C.L., Chappelle E.W., Daughtry C.S.T. Fluorescence sensing systems: In vivo detection of biophysical variations in field corn due to nitrogen supply // Remote Sens. Environ. 2003. V. 86. Р. 470–479.
  11. Hoge F.E., Swift R.N., Yungel J.K. Feasibility of airborne detection of laser-induced fluorescence emissions from green terrestrial plants // Appl. Opt. 1983. V. 22, N 19. P. 2991–3000.
  12. Bunkin F.V., Bunkin A.F. Lidarnoe zondirovanie vodoemov, pochvy i rastitel'nosti // Optika atmosf. i okeana. 2000. V. 13, N 1. P. 63–68.
  13. Hristov H.A., Borisova E.G., Avramov L.A., Kolev I.N. Applications of laser-induced fluorescence for remote sensing // Proc. SPIE. 2001. V. 4397. Р. 496–500.
  14. Afonasenko A.V., Iglakova A.I., Matvienko G.G., Oshlakov V.K., Prokop'ev V.E. Laboratornye i lidarnye izmerenija spektral'nyh harakteristik list'ev berezy v razlichnye periody vegetacii // Optika atmosf. i okeana. 2012. V. 25, N 3. P. 237–243.
  15. Middleton E., McMurtrey J.E., Entcheva Campbell P.K., Corp L.A., Butcher L.M., Chappelle E.W. Optical and fluorescence properties of corn leaves from different nitrogen regimes // Proc. SPIE. 2003. V. 4879. Р. 72–83.
  16. Lee K.J., Park Y., Bunkin A., Nunes R., Pershin S., Voliak K. Helicopter-based lidar system for monitoring the upper ocean and terrain surface // Appl. Opt. 2002. V. 41, N 3. Р. 401–406.
  17. Gouveia-Neto A.S., Silva E.A., Oliveira R.A., Cunha P.C., Costa E.B., Câmara T.J.R., Willadino L.G. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodisiel // Proc. SPIE. 2011. V. 7902. Р. 79020А-1–79020А-10.
  18. Zavorueva E.N., Zavoruev V.V. Koncentracija pigmentov i krasnaja fluorescencija list'ev Elytrigia repens v processe vegetacii rastenij // Optika atmosf. i okeana. 2013. V. 26, N 12. P. 1106–1111.