Vol. 28, issue 10, article # 5

Kablukova E. G., Kargin B. A., Lisenko A. A., Matvienko G. G. Numerical simulation of polarized terahertz echo-signal properties at ground-based cloud remote sensing. // Optika Atmosfery i Okeana. 2015. V. 28. No. 10. P. 892-900. DOI: 10.15372/AOO20151005 [in Russian].
Copy the reference to clipboard

Abstract:

The results of numerical statistical simulations of experiments of the cloud layer ground-based sensing by the terahertz linearly polarized radiation at few wavelengths from the atmospheric transparency windows are presented in the paper. Liquid droplet size distributions, summarized results of many years field measurements in the midlatitudes of the Earth and the distributions obtained by aircraft experiments off Great Britain coast are used in the scattering layer models. The models of the scattering medium take into account the vertical stratification of the water vapor concentration in the atmosphere and the differences in the cloud layer microstructure at the top and base.

Keywords:

cloud droplet size distribution, terahertz radiation, remote sensing, polarization, Monte Carlo method, local estimate

References:

  1. Brown E.R., Woolard D.L., Samuels A.C., Globus T., Gelmont B. Remote detection of bioparticles in the THz region // Proc. IEEE  Int. Microwave Symp. V. 3. June, 2002. IMS, Seattle, WA.  P. 1591–1594.
  2. Globus T., Woolard D.L., Samuels A.C., Gelmont B.L., Hesler J., Crowe T.W., Bykhovskaia M. Submillimeter-wave Fourier transform spectroscopy of macromolecules // J. Appl. Phys.  2002. V. 91, N 9. P. 6105–6113.
  3. Slocum D.M., Goyette T.M., Slingerland E.J., Giles R.H., Nixon W.E. Terahertz atmospheric attenuation and continuum effects // Proc. SPIE. 2013. V. 8716. ID 871607. 14 p.
  4. Slocum D.M., Slingerland E.J., Giles R.H., Goyette T.M. Atmospheric absorption of terahertz radiation and water vapor continuum effects // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 127. P. 49–63.
  5. Ageev B.G., Matvienko G.G., Ponomarev Ju.N., Chesnokov E.N. Perspektiva ispol'zovanija teragercovogo diapazona v atmosfernoj optike // Sb. trudov pervogo rabochego soveshhanija «Generacija i primenenie teragercovogo izluchenija». Novosibirsk, 2006. P. 96–103.
  6. Liebe H.J. MPM – An atmospheric millimeter-wave propagation model // Int. J. Infrared Millim. Waves. 1989. V. 10, N 6. P. 631–650.
  7. Pickett H.M., Poynter R.L., Cohen E.A., Delitsky M.L., Pearson J.C., Muller H.S.P. Submillimeter millimeter and microwave spectral line catalog // J. Quant. Spectrosc. Radiat. Transfer. 1998. V. 60. P. 883–890.
  8. Yum S.S., Hudson J.G. Maritime/continental microphysical contrasts in stratus // Tellus B. 2002. V. 54, N 1. P. 61–73.
  9. Daum P.H., Liu Y., McGraw R.L., Lee Y.-N., Wang J., Senum G., Miller M., Hudson J.G. Microphysical Properties of Stratus/Stratocumulus Clouds During the 2005 Marine Stratus/Stratocumulus Experiment (MASE). Submitted to J. Geophys. Res. 2007. URL: http://www. ecd.bnl.gov/pubs/BNL-77935-2007-JA.pdf
  10. Ajvazjan G.M. Rasprostranenie millimetrovyh i submillimetrovyh voln v oblakah. L.: Gidrometeoizdat, 1991. 480 p.
  11. Miles N.L., Verlinde J., Clothiaux E.E. Cloud droplet size distributions in low-level stratiform clouds // J. Atmos. Sci. 2000. V. 57. P. 295–311.
  12. Oblaka i oblachnaja atmosfera / Pod red. I.P. Mazina, A.H. Hrgiana. L.: Gidrometeoizdat, 1989. 648 p.
  13. Mazin I.P., Shmeter S.M. Oblaka, stroenie i fizika obrazovanija. L.: Gidrometeoizdat, 1983. 279 p.
  14. Wood R. Drizzle in stratiform boundary layer clouds. Part I: Vertical and horizontal structure // J. Atmos. Sci. 2005. V. 62. P. 3011–3033.
  15. Nicholls S. The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model // Quart. J. Roy. Meterol. Soc. 1984. V. 110. P. 783–820.
  16. Radiacija v oblachnoj atmosfere / Pod red. E.M. Fejgel'son. L.: Gidrometeoizdat, 1981. 280 p.
  17. Kachurin L.G. Fizicheskie osnovy vozdejstvija na atmosfernye processy. L.: Gidrometeoizdat, 1990. 464 p.
  18. Wiscombe W. Improved Mie scattering algorithms // Appl. Opt. 1980. V. 19, N 9. P. 1505–1509.
  19. Rozenberg G.V. Vektor-parametr Stoksa // Uspehi fiz. nauk. 1955. V. 56, N 1. P. 77–109.
  20. Chandarsekar S. Perenos luchistoj jenergii. M.: Izdatelstvo inostr. lit-ry, 1961. 536 p.
  21. Marchuk G.I., Mihajlov G.A., Nazaraliev M.A., Darbinjan R.A., Kargin B.A., Elepov B.S. Metod Monte-Karlo v atmosfernoj optike. M.: Nauka, 1976. 284 p.
  22. Mihajlov G.A., Uhinov S.A., Tracheva N.V. Ocenka metodom Monte-Karlo parametrov asimptotiki pomehi obratnogo rassejanija s uchetom poljarizacii // Optika atmosf. i okeana. 2010. V. 23, N 9. P. 739–748.
  23. Supercomputer center of the Institute of Computational Mathematics and Mathematical Geophysics, SB RAS. URL: http://www2.sscc.ru/
  24. Marchenko M.A. Biblioteka PARMONC na sajte CKP SSKC SO. URL: http://www2.sscc.ru/ SORAN–INTEL/paper/2011/parmonc.htm (data obrashhenija: 14.08.2015 year.).
  25. Marchenko M. PARMONC – A software library for massively parallel stochastic simulation // LNCS. 2011. V. 6873. P. 302–315.