Vol. 28, issue 05, article # 6

Petrova T. M., Ponomarev Yu. N., Solodov A. A., Solodov A. M., Boldyrev N. Yu. Spectroscopic complex for investigation of selective and nonselective absorption spectra of gases in a wide spectral range. // Optika Atmosfery i Okeana. 2015. V. 28. No. 05. P. 430-435. DOI: 10.15372/AOO20150506 [in Russian].
Copy the reference to clipboard

Abstract:

This paper reports the design of the spectroscopic complex at IAO SB RAS for investigation of the absorption spectra in a wide spectral range (from 500 to 40000 cm–1) with a high sensitivity. The design of 30 m base length cell and the optical scheme are described, the comparison to the known analogous complexes is considered. The results of the study of selective and nonselsective absorption spectra, as well as spectra of gases confined in nanopores are presented.

Keywords:

Fourier spectroscopy, multipass gas cell, selective and nonselective absorption spectra

References:

  1. Spectroscopy of the Earth’s Atmosphere and Interstellar Medium / K.N. Rao, A. Weber, eds. N. Y.: Academic Press, 1992. 512 p.
  2. Greeley R. Introduction to Planetary Geomorphology. Cambridge, UK: Cambridge University Press, 2013. 232 p.
  3. Held I.M., Soden B.J. Water vapor feedback and global warming // Annu. Rev. Energy Environ. 2000. V. 25. P. 441–475.
  4. Bhosale J.S. High signal-to-noise Fourier transform spectroscopy with light emitting diode sources // Rev. Sci. Instrum. 2011. V. 82, iss. 9. Р. 09303.
  5. Serdyukov V.I., Sinitsa L.N., Vasil’chenko S.S. Highly sensitive Fourier transform spectroscopy with LED sources // J. Mol. Spectrosc. 2013. V. 290, N 1. P. 13–17.
  6. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.M. Near infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35. DOI: 10.1016/j.jqsrt.2013.02.016.
  7. Ptashnik I.V., Petrova T.M., Ponomarev Ju.N., Solodov A.A., Solodov A.M. Kontinual'noe pogloshhenie vodjanogo para v oknah prozrachnosti blizhnego IK-diapazona // Optika atmosf. i okeana. 2014. V. 27, N 11. P. 970–975.
  8. Klimeshina T.E., Petrova T.M., Rodimova O.B., Solodov A.M., Solodov A.A. Pogloshhenie CO2 za kantami polos v oblasti 8000 sm–1 // Optika atmosf. i okeana. 2014. V. 27, N 5. P. 378–386.
  9. Ponomarev Ju.N., Petrova T.M., Solodov A.M., Solodov A.A., Sulakshin S.A. Fur'e-spektrometr s 30-metrovoj mnogohodovoj kjuvetoj dlja issledovanija slabyh spektrov pogloshhenija atmosfernyh gazov // Optika atmosf. i okeana. 2011. Т. 24, № 8. С.726–728.
  10. Tobin C.D., Strow L.L., Lafferty W.J., Olson W.B. Experimental investigation of the self- and N2-broadened continuum within the n2 band of water vapor // Appl. Opt. 1996. V. 35, N 24. P. 4724–4734.
  11. Toth R.A. Air- and N2-broadening parameters of water vapor: 604 to 2271 cm–1 // J. Mol. Spectrosc. 2000. V. 201, N 1. P. 218–243.
  12. Regalia L., Oudot C., Thomas X., Von der Heyden P., Decatoire D. FTS improvements and connection with a long White cell. Application: H216O intensity measurements around 1200 cm–1 // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, iss. 11. P. 826–842.
  13. Ptashnik I.V., McPheat R.A., Shine K.P., Smith K.M., Williams R.G. Water vapor self-continuum in near infrared windows derived from laboratory measurements // J. Geophys. Res. 2011. V. 116. D16305.
  14. Petrova T.M., Solodov A.M., Solodov A.A., Lyulin O.M., Tashkun S.A., Perevalov V.I. Measurements of 12C16O2 line parameters in the 8790–8860, 9340–9650, and 11430–11505 cm–1 wavenumber regions by means of Fourier transform spectroscopy // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 124. P. 21–27. DOI: 10.1016/j.jqsrt.2013.03.017.
  15. Lorono Gonzalez M.A., Boudon V., Loete M., Rotger M., Bourgeois M.-T., Didriche K., Herman M., Kapitanov V.A., Ponomarev Yu.N., Solodov A.A., Solodov A.M., Petrova T.M. High-resolution spectroscopy and preliminary global analysis of C–H stretching vibrations of C2H4 in the 3000 and 6000 cm–1 regions // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, iss. 15. P. 2265–2278.
  16. Petrova T.M., Lavrentieva N.N., Solodov A.M., Solodov A.A. Measurements of N2-broadening and -shifting parameters of the water vapor spectral lines in the second hexad region // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, iss. 15. P. 2291–2297.
  17. Petrova T.M., Solodov A.M., Solodov A.A., Dudaryonok A.S., Lavrentieva N.N. Measurements of O2-broadening and -shifting parameters of water vapor spectral lines in the second hexad region // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, iss. 18. P. 2741–2749.
  18. Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Vibrational dependence of an intermolecular potentialfor H2O–He system // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 129. P. 241–253. DOI: 10.1016/j.jqsrt.2013.06.021.
  19. Petrova T.M., Solodov A.M., Solodov A.A., Starikov V.I. Line mixing in some water vapor transitions perturbed by N2, Ar, and He pressure // J. Mol. Struct. 2015. V. 1080. P. 63–68.
  20. Wang L., Perevalov V.I., Tashkun S.A., Liu A.W., Hu S.M. Absorption spectra of 12C16O2 and 13C16O2 near 1.05 mm // J. Mol. Spectrosc. 2005. V. 233, iss. 2. P. 297–300.
  21. Solodov A.A., Chesnokova T.Yu., Ponomarev Yu.N., Solodov A.M., Chentsov A.V. Measurement of SO2 absorption spectra in the UV spectral region // Proc. SPIE. 2014. V. 9292. P. 929208-1–929208-6.
  22. Shine K.P., Ptashnik I.V., Radel G. The water vapour continuum: Brief history and recent developments // Surv. Geophys. 2012. V. 33, N 3–4. P. 535–555.
  23. Bicknell W.E., Cecca S.D., Griffin M.K., Swartz S.D., Flusberg A. Search for low-absorption regions in the 1.6- and 2.1-mm atmospheric windows // J. Dir. Energy. 2006. V. 2, N 2. P. 151–161.
  24. Mondelain D., Aradj A., Kassi S., Campargue A. The water vapour self-continuum by CRDS at room temperature in the 1.6 mm transparency window // J. Quant. Spectrosc. Radiat. Transf. 2013. V. 130. Р. 381–391. DOI: 10.1016/j.jqsrt.2013.07.006.
  25. Ponomarev Yu.N., Petrova T.M., Solodov A.M., Solodov A.A. IR spectroscopy of water vapor confined in nanoporous silica aerogel // Opt. Express. 2010. V. 18, N 25. P. 26062–26067.
  26. Auwera J.V., Ngo N.H., Hamzaoui H.E., Capoen B., Bouazaoui M., Ausset P., Boulet C., Hartmann J.-M. Infra-red absorption by molecular gases as a probe of nanoporous silica xerogel and molecule surface collision: Low pressure result // Phys. Rev. A. 2013. V. 88. P. 042506-1–042506-10.
  27. Svensson T., Lewander M., Svanberg S. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: Wall collision line broadening and gas diffusion dynamics // Opt. Express. 2010. V. 18, N 16. P. 16460–16473.
  28. Petrova T.M., Ponomarev Ju.N., Solodov A.A., Solodov A.M. Spektroskopicheskaja nanoporometrija ajerogelja // Pis'ma v ZhJeTF. 2015. V. 101, issue 1. P. 68–70.
  29. Ponomarev Ju.N., Petrova T.M., Solodov A.M., Solodov A.A. Nabljudenie zapreshhennoj polosy pogloshhenija H2 v nanoporah ajerogelja // Pis'ma v ZhJeTF. 2014. V. 99, issue 11. P. 721–723.