Vol. 28, issue 04, article # 2

Klimeshina T. E., Petrova T. M., Rodimova O. B., Solodov A. A., Solodov A. M. СО2 absorption in band wings. // Optika Atmosfery i Okeana. 2015. V. 28. No. 04. P. 291–297 [in Russian].
Copy the reference to clipboard

Abstract:

The CO2 absorption was measured in the 7 000 and 8 000 cm–1 region. Calculations of the absorption coefficient were performed using the asymptotic line wing shape theory. Line contour parameters were associated with the classical potential governing the center-of-mass motion and with the quantum potential of two interacting molecules. They were found from fitting the calculated absorption coefficient to experiment. The calculated coefficient values agree well with the measured data. According to the line wing theory the absorption in the band wings is due to the wings of the strong lines of adjacent band. With these assumptions experimental and calculated data on the CO2 absorption coefficient in the band wings in the 7 000 and 8 000 cm–1 regions can provide information on the line shape at frequency detunings from several tens to several hundreds of half-widths. The results obtained support the hypothesis that line shape parameters in the line wings related to the transitions with the same initial state appear to be close to each other. Deviations from the Lorentzian contour are defined for a set of CO2 bands. The former are found to be different for the wings of different bands.

Keywords:

continuum absorption, carbon dioxide, self-broadening, spectral line wings

References:

  1. Winters B.H., Silverman S., Benedict W.S. Line shape in the wing beyond the band head of the 4.3 mm band of CO2 // J. Quant. Spectrosc. Radiat. Transfer. 1964. V. 4, N 4. P. 527–537.
  2. Bulanin M.O., Bulychev V.P., Granskij P.V., Kouzov A.P., Tonkov M.V. Issledovanie funkcij propuskanija CO2 v oblasti polos 4.3 i 15 mm // Problemy fiziki atmosfery. Issue 13. L.: Izd. LGU, 1976. P. 14–24.
  3. Menoux V., LeDoucen R., Boissoles J., Boulet C. Line shape in the low-frequency wing of self- and N2-broadened n3 CO2 lines: Temperature dependence of the asymmetry // Appl. Opt. 1991. V. 30, N 3. P. 281–286.
  4. Bulanin M.O., Dokuchaev A.B., Tonkov M.V., Filipov N.N. Influence of the line interference on the vibration-rotation band shapes // J. Quant. Spectrosc. Radiat. Transfer. 1984. V. 31, N 6. P. 521–543.
  5. Stefani S., Piccioni G., Snels M., Grassi D., Adriani A. Experimental CO2 absorption coefficients at high pressure and high temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 117. P. 21–28.
  6. Tran H., Boulet C., Stefani S., Snels M., Piccioni G. Measurements and modelling of high pressure pure CO2 spectra from 750 to 8 500 cm–1: I-central and wing regions of the allowed vibrational bands // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 6. P. 925–936.
  7. Wordsworth R., Forget F., Eymet V. Infrared collision induced and far line absorption in dense CO2 atmospheres // Icarus. 2010. V. 210, iss. 2. P. 992–997.
  8. Perrin M.Y., Hartmann J.M. Temperature-dependent measurements and modeling of absorption by CO2–N2 mixtures in the far line-wings of the 4.3-mm CO2 band // J. Quant. Spectrosc. Radiat. Transfer. 1989. V. 42, iss. 4. P. 311–317.
  9. Burch D.E., Gryvnak D.A. Absorption of infrared radiant energy by CO2 and H2O. V. Absorption by CO2 between 1 100 and 1 835 cm–1 (9.1–5.5 mm) // J. Opt. Soc. Amer. 1971. V. 61, N 4. P. 499–503.
  10. Burch D.E., Gryvnak D.A., Patty R.R., Bartky Ch.E. Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines // J. Opt. Soc. Amer. 1969. V. 59, N 3. P. 267–280.
  11. Lamouroux J., Tran H., Laraia A.L., Gamache R.R., Rothman L.S., Gordon I.E., Hartmann J.-M. Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra in the 1.5–2.3 mm region // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2321–2331.
  12. Ma Q., Tipping R.H. The distribution of density matrices over potential-energy surfaces: Application to the calculation of the far-wing line shapes for CO2 // J. Chem. Phys. 1998. V. 108, N 9. P. 3386–3399.
  13. Ma Q., Tipping R.H., Boulet C., Bouanich J. Theoretical far-wing line shape and absorption for high-temperature CO2 // Appl. Opt. 1999. V. 38, N 3. P. 599–604.
  14. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kontur spektral'noj linii i mezhmolekuljarnoe vzaimodejstvie. Novosibirsk: Nauka, 1986. 216 p.
  15. Tvorogov S.D., Nesmelova L.I. Radiacionnye processy v kryl'jah polos atmosfernyh gazov // Izv. AN SSSR. Ser. Fiz. atmosf. i okeana. 1976. V. 12, N 6. P. 627–633.
  16. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Kojefficient pogloshhenija sveta v kryle polosy 4.3 mm CO2 // Izv. vuzov. Fiz. 1980. Issue 10. P. 106–107.
  17. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. Spektral'noe povedenie kojefficienta pogloshhenija v polose 4.3 mm CO2 v shirokom diapazone temperatur i davlenij // Optika atmosf. i okeana. 1992. V. 5, N 9. P. 939–946.
  18. Rodimova O.B. Kontur spektral'nyh linij CO2 pri samoushirenii ot centra do dalekogo kryla // Optika atmosf. i okeana. 2002. V. 15, N 9. P. 768–777.
  19. Bezard B., Fedorova A., Bertaux J.-L., Rodin A., Korablev O. The 1.10- and 1.18-mm nightside windows of Venus observed by SPICAV-IR aboard Venus Express // Icarus. 2011. V. 216, iss. 1. P. 173–183.
  20. Afanasenko T.S., Rodin A.V. Vlijanie stolknovitel'nogo ushirenija linij na spektr i potoki teplovogo izluchenija v nizhnej atmosfere Venery // Astron. vestn. 2005. V. 39, N 3. P. 1–13.
  21. Afanasenko T.S., Rodin A.V. Interference of spectral lines in thermal radiation from the lower atmosphere of Venus // Astron. Lett. 2007. V. 33, N 3. P. 203–210.
  22. Klimeshina T.E., Petrova T.M., Rodimova O.B., Solodov A.A., Solodov A.M. Pogloshhenie CO2 za kantami polos v oblasti 8 000 сm–1 // Optika atmosf. i okeana. 2013. V. 26, N 11. P. 925–931.
  23. Ponomarjov Ju.N., Petrova T.M., Solodov A.M., Solodov A.A., Sulakshin S.A. Fur'e-spektrometr s 30-metrovoj mnogohodovoj kjuvetoj dlja issledovanija slabyh spektrov pogloshhenija atmosfernyh gazov // Optika atmosf. i okeana. 2011. V. 24, N 8. P. 726–728.
  24. Ptashnik I.V., Petrova T.M., Ponomarev Yu.N., Shine K.P., Solodov A.A., Solodov A.M. Near infrared water vapour self-continuum at close to room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 120. P. 23–35.
  25. Tvorogov S.D., Rodimova O.B. Spectral line shape. I. Kinetic equation for arbitrary frequency detunings // J. Chem. Phys. 1995. V. 102, N 22. P. 8736–8745.
  26. Bogdanova Yu.V., Rodimova O.B. Line shape in far wings and water vapor absorption in a broad temperature interval // J. Quant. Spectrosc. Radiat. Transfer. 2010. V. 111, N 15. P. 2298–2307.
  27. Gordov E.P., Tvorogov S.D. Metod poluklassicheskogo predstavlenija kvantovoj teorii. Novosibirsk: Nauka, 1984. 167 p.
  28. Zwanzig R. Ensemble method in the theory of irreversibility // J. Chem. Phys. 1960. V. 33, N 5. P. 1338–1341.
  29. Girshfel'der Dzh., Kertiss Ch., Berd R. Molekuljarnaja teorija gazov i zhidkostej. M.: Izdatelstvo inostr. lit., 1961. 930 p.
  30. Vojcehovskaja O.K., Nesmelova L.I., Rodimova O.B., Sulakshina O.N., Makushkin Ju.S., Tvorogov S.D. Kojefficient pogloshhenija sveta v kryle polosy 1.4 mm CO2 // 6-j Vsesojuz. simpoz. po rasprostraneniju lazernogo izluchenija v atmosfere: tezisy dokl. Tomsk, 1981. Part 2. P. 16–19.
  31. Nesmelova L.I., Rodimova O.B., Tvorogov S.D., Vojcehovskaja O.K., Makushkin Ju.S., Sulakshina O.N. Kojefficient pogloshhenija sveta v kryl'jah polos uglekislogo gaza v oblasti 2.7 mm // 6-j Vsesojuz. simpoz. po molekuljarnoj spektroskopii vysokogo i sverhvysokogo razreshenija: tezisy dokl. Tomsk, 1982. Part 2. P. 62–66.
  32. Nesmelova L.I., Rodimova O.B., Tvorogov S.D., Vojcehovskaja O.K., Sulakshina O.N. Kojefficient pogloshhenija v kryl'jah polos uglekislogo gaza v spektral'nom intervale 790–910 cm–1 // Izv. vuzov. Fiz. 1982. Issue 5. P. 105–108.
  33. Solodov A.A., Klimeshina T.E., Petrova T.M., Rodimova O.B., Solodov A.M. The CO2 line shape in the far wing in the 8 200–8 300 cm–1 spectral region // 23-nd Colloquium on High Resolution Molecular Spectroscopy. Budapest, 2013. P. 74.
  34. Le Doucen R., Cousin C., Boulet C., Henry A. Temperature dependence of the absorption in the region beyond the 4.3 mm band of CO2. I: Pure CO2 case // Appl. Opt. 1985. V. 24, N 6. P. 897–906.
  35. Hartmann J.-M., Boulet C. Line mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting and scaling analysis // J. Chem. Phys. 1991. V. 94, N 10. P. 6406–6419.