Vol. 27, issue 04, article # 3

Patsaeva S. V., Dolenko T. A., Burikov S. A., Yuzhakov V. I. Remote determination of concentration of organic solvents in binary mixtures using Raman spectroscopy. // Optika Atmosfery i Okeana. 2014. V. 27. No. 04. P. 284-290 [in Russian].
Copy the reference to clipboard

Abstract:

Binary mixtures of methanol, ethanol, isoamyl alcohol, and acetic acid with water in various proportions have been studied using Raman spectroscopy. Upon variations in organic solvent concentration in water changes in intensities ratio for bands of СН- and ОН-group stretching vibrations within a spectral range 2600–3800 cm–1 were observed. For quantitative characterization of partial concentrations of solvents mixed with water, we have chosen an integral intensity ICH of CH-stretching band, normalized to the sum (ICH + IOH) of both СН- and ОН-group stretching bands taken within the 2600–3800 cm–1 wavenumber interval. Using this type of intensity normalization, we get the value ICH/(ICH + IOH) which depends linearly on the volume fraction of an organic solvent in aqueous solution throughout the whole studied range of its concentration. Raman spectroscopy with normalization to sum of both CH- and ОН-group stretching bands gives possibility of non-contact detection and quantification of flammable or toxic liquid mixed with water. Relative accuracy of concentration determination for ethanol, methanol, and acetic acid in water was achieved as good as 0.5, 1.1, and 1.5%, respectively.

Keywords:

Raman scattering, СН- and ОН-groups, aqueous solutions, organic solvents, determination of concentration

References:

1. Bunte G., Schweikert W., Deimling J., Schnurer F., Krause H. Detection of Liquid Explosives and/or Flam-mable Liquids by Different Techniques // Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism. NATO Science for Peace and Security. Series B: Physics and Biophysics. 2008. P. 179–188.
2. Stancl M., Kyncl M. Some Detection Procedures for Liquid Explosives // Detection of Liquid Explosives and Flammable Agents in Connection with Terrorism. NATO Science for Peace and Security. Series B: Physics and Biophysics. 2008. P. 79–96.
3. Wallin S., Pettersson A., Stmark H., Hobro A. Laser-based standoff detection of explosives: a critical review // Anal. and Bioanal. Chem. 2009. V. 395, N 2. P. 259–274.
4. Fiddler M.N., Begashaw I., Mickens M.A., Collingwood M.S., Assefa Z., Bililign S. Laser Spectroscopy for Atmospheric and Environmental Sensing // Sens. 2009. V. 9, N 12. P. 10447–10512.
5. Sakovich G.V., Chernov A.I., Silant'ev S.V., Vorozhcov A.B., Pavlenko A.A., Maksimenko E.V., Makogon M.M., Klimkin A.V., Osipov K.Ju., Ponomarev Ju.N., Kapitanov V.A., Ageev B.G. Maket distancionnogo detektora vzryvchatyh veshhestv na osnove izotopnogo CO2-lazera // Polzunovskij vestnik. 2010. N 4. P. 38–46.
6. Wiens R.C., Sharma S.K., Thompson J., Misra A., Lucey P.G. Joint Analyses by Laser Induced Breakdown Spectroscopy (LIBS) and Raman Spectroscopy at Stand-Off Distances // Spectrochim. Acta. A. 2005. V. 61, N 10. P. 2324–2334.
7. Gottfried J.L., De Lucia F.C., Munson C.A., Miziolek A.W. Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects // Anal. and Bioanal. Chem. 2009. V. 395, N 2. P. 283–300.
8. Jacox M.E. Matrix isolation study of the infrared spectrum and structure of the CH3 free radical // J. Mol. Spectrosc. 1977. V. 66, N 2. P. 272–287.
9. Rytter E., Gruen D.M. Infrared spectra of matrix isolated and solid ethylene. Formation of ethylene dimmers // Spectrochim. Acta. A. 1979. V. 35, N 3. P. 199–207.
10. Boganov S.E., Kudrjashov S.V., Rjabov A.Ju., Klimkin V.M., Klimkin A.V., Egorov M.P., Nefedov O.M. Issledovanie prevrashhenija metana i ciklogeksana v tlejushhem i mikrovolnovom razrjadah metodom matrichnoj IK-spektroskopii // Izv. Tomsk. politehn. universiteta. 2008. V. 312, N 2. P. 143–148.
11. Boganov S.E., Kudrjashov S.V., Rjabov A.Ju., Klimkin A.V., Egorov M.P., Nefedov O.M. Spektroskopicheskoe issledovanie produktov prevrashhenija metana i ciklogeksana v tlejushhem razrjade // Optika atmosf. i okeana. 2008. V. 21, N 8. P. 741–746.
12. Ramirez M.L., Ortiz W., Pacheco-Londono L.C., Hernandez-Rivera S.P. Remote Detection of Hazardous Li-quids Concealed in Glass and Plastic Containers // IEEE J. Sens. 2010. V. 10, N 3. P. 693–698.
13. Marley N.A., Mann C.K., Vickers T.J. Raman spectroscopy in trace analysis for phenols in water // Appl. Spectrosc. 1985. V. 39, N 4. P. 628–633.
14. Tanabe K., Hiraisha J. Vibrational frequencies and line-widths of C–H stretching Raman bands of organic molecules in aqueous solution // Chem. Phys. Lett. 1980. V. 71, N 3. P. 460–462.
15. Holden C.A., Hunnicutt S.S., Sanchez-Ponce R., Craig J.M., Rutan S.C. Study of Complexation in Methanol/Water Mixtures by Infrared and Raman Spectroscopy and Multivariate Curve Resolution-Alternating Least Squares Analysis // Appl. Spectrosc. 2003. V. 57, N 5. P. 483–490.
16. Dixit S., Poon W.C.K., Crain J. Hydration of methanol in aqueous solutions: a Raman spectroscopic study // J. of Phys.: Condens Matter. 2000. V. 12, N 21. P. L323–L328.
17. Sanford C.L., Mantooth B.A., Jones B.T. Determination of Ethanol in Alcohol Samples Using a Modular Raman Spectrometer // J. Chem. Educ. 2001. V. 78, N 9. P. 1221–1225.
18. Cleveland D., Carlson M., Hudspeth E.D., Quattrochi L.E., Batchler K.L., Balram S.A., Hong S., Michel R.G. Raman Spectroscopy for the Undergraduate Teaching Laboratory: Quantification of Ethanol Concentration in Consumer Alcoholic Beverages and Qualitative Identification of Marine Diesels Using a Miniature Raman Spectrometer // Spectrosc. Lett. 2007. V. 40, iss. 6. P. 903– 924.
19. Burikov S.A., Dolenko T.A., Pacaeva S.V., Juzhakov V.I. Diagnostika vodno-jetanol'nyh rastvorov metodom spektroskopii kombinacionnogo rassejanija sveta // Optika atmosf. i okeana. 2009. V. 22, N 11. P. 1082–1088.
20. Burikov S., Dolenko T., Patsaeva S., Starokurov Yu., Yuzhakov V. Raman and IR spectroscopy research on hydrogen bonding in water-ethanol systems // Mol. Phys. 2010. V. 108, N 18. P. 2427–2436.
21. Burikov S.A., Dolenko T.A., Pacaeva S.V., Juzhakov V.I. Lazernyj analizator zhidkostej s kompleksnym programmnym obespecheniem // Voda: himija i jekologija. 2010. N 1. P. 31–37.
22. Dolenko T.A., Burikov S.A., Pacaeva S.V., Juzhakov V.I. Projavlenie vodorodnyh svjazej vodno-jetanol'nyh rastvorov v spektrah kombinacionnogo rassejanija sveta // Kvant. jelektron. 2011. V. 41, N 3. P. 267–272.
23. Dolenko S.A., Burikov S.A., Dolenko T.A., Persiantsev I.G. Adaptive Methods for Solving Inverse Problems in Laser Raman Spectroscopy of Multi-Component Solutions // Pattern Recognition and Image Analysis. 2012. V. 22, N 4. P. 551–558.
24. Burikov S.A., Dolenko S.A., Dolenko T.A., Persiantsev I.G. Application of Artificial Neural Networks to Solve Problems of Identification and Determination of Concentration of Salts in Multi-Component Water Solutions by Raman Spectra // Optical Memory and Neural Networks (Information Optics). 2010. V. 19, N 2. P. 140–148.
25. Burikov S., Dolenko S., Dolenko T., Patsaeva S., Yuzhakov V. Decomposition of water Raman stretching band with a combination of optimization methods // Mol. Phys. 2010. V. 108, N 6. P. 739–747.