Vol. 26, issue 11, article # 3
Copy the reference to clipboard
Abstract:
Results of calculation of the mean intensity and deviation from the rectilinear direction of propagation of the optical beam crossing a shock wave at the beginning of a path in a homogeneous medium are present. It is shown that the spatial inhomogeneity of the refractive index of air in the area occupied by a shock wave in the vicinity of a conical body moving with the supersonic speeds can cause focusing effect on a beam intersecting shock wave. Magnitude of angular displacements of a beam, crossing shock wave, depends only on the height above the Earth's surface at which the shock wave is formed. The impact of shock wave on a beam crossing it decreases with the height increase.
Keywords:
diffraction, a shock wave, mean intensity, angular deviation, focusing of optical radiation
References:
1. Frumker E., Pade O. Generic method for aero-optic evaluations // Appl. Opt. 2004. V. 43, N 16. P. 3224–3228.
2. Pade O. Models of turbulence for aero-optics applications // Proc. SPIE. 2001. V. 4419. P. 494–498.
3. Wang T., Zhao Y., Xu D., Yang Q.Y. Numerical study of evaluating the optical quality of supersonic flow fields // Appl. Opt. 2007. V. 46, N 23. P. 5545–5551.
4. Wang K., Wang M. Aero-optics of subsonic turbulent boundary layers // J. Fluid Mech. 2012. V. 696. P. 122–151.
5. Zubair F.R., Catrakis H.J. Aero-optical interaction along laser beam propagation paths in compressible turbulence // AIAA J. 2007. V. 45, N 7. P. 1663–1674.
6. Gao Q., Yi S.H., Jiang Z.F., He L., Zhao Y.X. Hierarchical structure of the optical path length of the supersonic turbulent boundary layer // Opt. Express. 2012. V. 20, iss. 15. P. 16494–16503.
7. Buckner A., Gordeyev S., Jumper E.J. Optical aberrations caused by transonic attached boundary layers: underlying flow structure // AIAA Paper. 2005–0752.
8. Rennie R.M., Duffin D.A., Jumper E.J. Characterization and aero-optic correction of a forced two-dimensional weakly compressible shear layer // AIAA J. 2008. V. 46, N 11. P. 2787–2795.
9. Pade O. Optical propagation trough turbulent jets // Proc. SPIE. 2004. V. 5572. P. 24–33.
10. Frumker E., Pade O., Rojt P.I. Optical distortions caused by propagation through turbulent shear layers // Proc. SPIE. 2004. V. 5237. P. 31–38.
11. Pade O. Propagation through Shear Layers // Proc. SPIE. 2006. V. 6364. P. 63640E.
12. Yoshizawa A. Simplified statistical approach to complex turbulent flows and ensemble-mean compressible turbulence modeling // Phys. Fluids. 1995. V. 7, N 12. P. 3105–3117.
13. Banah V.A., Zaprjagaev V.I., Kavun I.N., Sazanovich V.M., Cvyk R.Sh. Jeksperimental'nye issledovanija dispersii i spektrov fluktuacij intensivnosti lazernogo puchka, peresekajushhego sverhzvukovoj potok gaza // Optika atmosf. i okeana. 2007. V. 20, N 5. P. 408–412.
14. Banah V.A., Marakasov D.A., Suharev A.A. Vosstanovlenie radial'noj zavisimosti strukturnoj harakteristiki pokazatelja prelomlenija v sverhzvukovom potoke gaza po fluktuacijam intensivnosti lazernogo puchka // Optika i spektroskopija. 2010. V. 108, N 1. P. 116–121.
15. Banah V.A., Marakasov D.A., Suharev A.A. Vosstanovlenie strukturnoj harakteristiki pokazatelja prelomlenija i srednej plotnosti vozduha v udarnoj volne, voznikajushhej pri sverhzvukovom obtekanii prepjatstvij, iz opticheskih izmerenij // Optika i spektroskopija. 2011. V. 111, N 6. P. 1032–1037.
16. Banah V.A., Zaprjagaev V.I., Sazanovich V.M., Suharev A.A., Cvyk R.Sh. Jeksperimental'nye issledovanija opticheskimi metodami sredy nad model'ju, obduvaemoj sverhzvukovoj struej // Optika atmosf. i okeana. 2010. V. 23, N 12. P. 1091–1098.
17. Banakh V.A., Marakasov D.A., Tsvyk R.Ch., Zapryagaev V.I. Study of Turbulent Supersonic Flow Based on the Optical and Acoustic Measurements // Wind Tunnels and Experimental Fluid Dynamics Research / Dr. Jorge Colman Lerner and Dr. Ulfilas Boldes (Ed.). ISBN: 978-953-307-623-2. InTech. 2011. P. 607–628.
18. Zuev V.E., Banah V.A., Pokasov V.V. Optika turbulentnoj atmosfery. Sovremennye problemy atmosfernoj optiki. V. 5. L.: Gidrometeoizdat, 1988. 270 p.
19. Kandidov V.P. Metod Monte-Karlo v nelinejnoj statisticheskoj optike // Uspehi fiz. nauk. 1996. V. 166, N 12. P. 1309–1338.
20. Banah V.A., Smaliho I.N. Opredelenie intensivnosti opticheskoj turbulentnosti po obratnomu atmosfernomu rassejaniju lazernogo izluchenija // Optika atmosf. i okeana. 2011. V. 24, N 4. P. 300–307.
21. Banah V.A., Smaliho I.N., Falic A.V. Jeffektivnost' metoda subgarmonik v zadachah komp'juternogo modelirovanija rasprostranenija lazernyh puchkov v turbulentnoj atmosfere // Optika atmosf. i okeana. 2011. V. 24, N 10. P. 848–851.
22. Gurvich A.S., Kon A.I., Mironov V.L., Hmelevcov S.S. Lazernoe izluchenie v turbulentnoj atmosfere. M.: Nauka, 1976. 280 p.
23. Wilcox D.C. Turbulence modeling for CFD. – DCW Industries, Inc., La Cañada, CA, 2006. 522 p.
24. Gao Q., Yi S.H., Jiang Z.F., He L., Wang Xi. Structure of the refractive index distribution of the supersonic turbulent boundary layer // Opt. and Lasers Eng. 2013. V. 51, iss. 9. P. 1113–1119.
25. Moshhnye lazernye puchki v sluchajno-neodnorodnoj atmosfere / Pod red. V.A. Banaha. Avt.: V.P. Aksenov, V.A. Banah, V.V. Valuev, V.E. Zuev, V.V. Morozov, I.N. Smaliho, R.Sh. Cvyk. Novosibirsk: Izd-vo SO RAN, 1998. 341 p.