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The paper describes results of theoretical investigation of high-power laser beam propagation 

along the ground and high-altitude atmospheric paths as well as the potentialities of remote measurement 
of beam characteristics.  The paper presents an overview of the algorithms for solving the problems of 
laser radiation blooming based on the method of statistical tests, the equation for statistical moments of a 
field complex amplitude and the radiation transfer equation.  The parameters of partially coherent 
radiation along characteristic atmospheric paths are analyzed.  Recommendations are given on how to 
optimize the radiation focusing and power.  The theoretical grounds of new methods for diagnostics of 
spatial$power and phase characteristics of laser beams are presented.  We also  present some results of 
numerical and laboratory experiments on reconstruction of the intensity and phase distributions. 

 

Introduction 
 

The increasing number of the optoelectronic 
instruments’ applications to sounding, optical detection 
and ranging, transportation of optical power through 
the atmosphere or focusing it on a high target have 
arisen a considerable interest of researchers in the study 
of high-power laser radiation propagation through the 
real atmosphere.  In this case it is necessary to take 
into account the aerosol and molecular absorption, the 
radiation scattering by aerosols, regular variation of 
atmospheric parameters along the propagation path, the 
effect of turbulence, the geometry of the problem, and 
a series of other factors.  Propagation of high power 
laser radiation can be accompanied by nonlinear effects.  
In such a formulation the problem of propagation of 
limited wave beams can be solved only by numerical 
methods. 

On the other hand, the creation of systems for 
adaptive control and optimization of beam parameters 
calls for a search and development of new remote 
techniques to measure spatial, power, and phase 
characteristics of optical radiation. 

New measurement techniques were developed 
when improving and, in some cases, devising  novel 
approaches to solve ill-posed inverse problems occurring 
in one or the other subject areas.  Because the solution 
of inverse problems is often based on the solution of the 
direct ones, the common solution of these problems is 
required. 

 

1. Numerical methods of the investigation 
of laser radiation blooming 

 

Numerical methods for solving the problems in  
studies of high-power laser beam propagation through 

the atmosphere have been being developed intensively 
since early the 70's. Those were based on the solution 
of the parabolic equation.  First, the algorithms for 
axisymmetric cases were developed.1,2  The possibility 
of constructing effective algorithms for solving the 
problems in the absence of axial symmetry relies on the 
use of the splitting method.3,4 

The five-point patterns and schemes of higher 
orders based on the method of finite elements formed 
the foundation for the difference schemes.5$8  The 
development of the fast Fourier transform algorithm9,10 
enabled one to construct numerical algorithms using an 
approach in which the linear diffraction equation is 
solved in the spectral space, and nonlinear refraction is 
taken into account in the approximation of a phase 
screen at each step of the propagation.11$14 

In investigating the laser radiation propagation, it 
is necessary to take into account that radiation can 
inherently be partially coherent.  It is important that 
even in the simplest case of radiation diffraction in 
vacuum the parabolic equation becomes inapplicable 
because the partial coherence can result  not only in the 
increase of the beam divergence but essentially modifies 
intensity distribution in a focal plane.  Therefore, in 
early the 80's the problem of the development of new 
theoretical methods was stated because, on the one 
hand, the urgency of the problem on investigating 
propagation of high-power laser radiation along 
atmospheric paths, and, on the other hand, the gap 
then existed between the practical needs and the 
development of the theory for this problem.  The 
radiation used in laser systems was essentially 
incoherent (the beam divergence exceeded the 

diffraction-limited divergence by an order of magnitude), 
while the calculations were based on the solution of the 
parabolic equation that describes the propagation of 
coherent radiation. There are two classical approaches 
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to investigation of propagation of random (partially 
coherent) fields: 

1) the stochastic approach based on the Monte 
Carlo method; 

2) the method of moments. 
High level of the development of numerical 

algorithms of the solution of parabolic equation 

predetermined its wide use in the investigation of 
dynamics of light field statistics based on the method of 
statistical tests.11,15$18  At the point of entry to the 
medium a set of pseudorandom field realizations was 
simulated satisfying the statistical characteristics of a 
source of incoherent radiation.  Then we averaged the 
results of multiple solution of the parabolic equation 
for a complex field amplitude and determined a set of 
power and statistical characteristics of a partially 
coherent beam.  It should be noted that the method of 
statistical tests does not require supplementary 

limitations, typical for the study by analytical methods 
of randomly modulated wave propagation.  But its 
practical application is limited by the condition that 
the time of radiation coherence essentially exceeds other 
characteristic dynamic times of the problem, in 
particular, the time of radiation coherence must exceed 
the time of nonlinear response of the medium. 

That means that in the framework of this approach 
it is possible to consider only the so-called, narrow-
band partially coherent radiation. 

Real situation for high-power laser beams 
corresponded to the inverse condition since the time of 
laser beam radiation coherence did not exceed 10$6 s, 
and the time of nonlinear response is about 10$1 s.  
Thus, the only possible approach to solving this 
problem was the method based on solution of equations 
for moments of the complex field amplitude.15,18$21 

 

1.1. Method of moments 

 

The correlation theory of random waves is 
restricted to consideration of only the first and second 
moments.  This enables one to study the dynamics of 
such quantities as the coherence time, the coherence 
length (radius), the degree of coherence, the 
distribution of mean intensity, and the Poynting vector.  
If it is necessary to study the dynamics of the radiation 
intensity fluctuations, we can use the equations for 
moments of higher orders. 

The passage from parabolic equation for a complex 
field amplitude 

 2ik 
∂E

∂z
 + —2

R E + 

 + k2 [εr (z, R) + i εi (z, R)] E(z, R) = 0  (1) 

(k is the wave number; εr, εi are the real and imaginary 
parts of the relative disturbance, Δε, of the dielectric 
constant of a medium) to a closed equation for the 
coherence function (the second-order moment) 

 2ik 
∂c2

∂z
 + 2∇R∇ρΓ2 + k2 [Δε(z, R + ρ/2) $ 

 $ Δε*(z, R $ ρ/2)] Γ2 (z, R, ρ) = 0 (2) 

in the problems on thermal blooming assumes a 
possibility of splitting field correlators and dielectric 
constant, being a functional of the radiation intensity. 

For the radiation, propagated in a medium with 
local inertial nonlinearity, a possibility of such a 
splitting was considered in the Ref. 22, where it was 
assumed that the splitting was possible if the effect of 
nonlinear disturbance of the dielectric constant due to 
variation of the field phase δϕ at the length of the 
longitudinal field correlation remained to be small.  In 
the Ref. 18 the same problems were analyzed based on 
the concept that the medium is a linear system, whose 
transmission coefficient is determined by the 
constitutive equation for the dielectric constant.  In 
this case it is possible to determine the dependence of 
the variance of dielectric constant fluctuations at the 
output of the system on the spectral density of  
intensity fluctuations at the system input and to define 
the conditions when the splitting of correlators is 
possible in the equation for Γ2(z, R, ρ, t). 

The fact, which is essential for these assessments, 
is that no dependence on the propagation distance 
occurs in the expressions obtained.  From the results of 
the investigations carried out in the framework of the 
perturbation method16,17,23$25

 it follows that at thermal 
blooming the infinitesimal initial fluctuations of the 
wave phase and amplitude results in the exponential 
growth of fluctuations with the increasing distance. The 
other result of the studies in Refs. 16 and 17 is the 
conclusion drawn there on the applicability of the 
above equation for the coherence function only for 
weakly nonlinear media (the refraction parameter must 
not exceed 1). However, in all the above-mentioned 
papers the following condition was used 

 τ0 >> τa, (3) 

where τ0 is the correlation time for the radiation 
intensity fluctuations; τa is the characteristic time of a 
nonlinear response of the medium to the variation of 
radiation intensity that corresponds to the so-called 
narrow-band partially coherent radiation. 

In Ref. 26 we have determined the applicability 
limits of the correlator splitting in the equation for the 
second order coherence function at thermal blooming of 
a wide-band radiation, i.e., under condition 

 τ0 < T  <<  τa, (4) 

where T is the period of pulse sequence  for the pulse-
periodic mode; τa = a/v, a is the beam radius, v is the 
wind velocity component transverse to the direction of 
beam propagation.  At thermal blooming of optical 
radiation in a moving medium the constitutive equation 
for estimating nonlinear perturbation of the dielectric 
constant in the isobaric approximation has the 
form16,23,26: 
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 = α  
dε

dT
 /(ρcp) I(z, r, t), (5) 

where λT is the coefficient of heat conductivity of the 

medium; α, p, cp  are the volume absorption coefficient, 
density, and specific heat of the medium, respectively. 

Thermal blooming of partially coherent radiation 
in the absence of wind (v = 0) was also considered.  
The mode of thermal blooming was investigated 
experimentally and theoretically in Ref. 23.  There are 
some reasons for assuming  that the time of coherence τ0 

of radiation exceeds all other characteristic times of the 
problem, i.e., the condition (3) is fulfilled.  To account 
for the influence of coherence time on the dynamics of 
the field fluctuations, in Ref. 26 this assumption was 
not used, and, accordingly, the time derivative in 
Eq. (5) remained. To eliminate the influence of beam 

distortions, as a whole, on its fluctuation characteristics, 
we consider a beam with a uniform  distribution of the 
mean intensity over the aperture, whose size satisfies 
the conditions 

 = >> rk,   = >> 2πz/k , (6) 

where rk is the coherence radius.  The field was 
represented in the form 

 E(z, r, t) = E0 exp [χ(z, r, t) + iS0(z, r, t)] + 

 + iS(z, r, t), (7) 

where χ(z, r, t) is the logarithm of the relative field 
amplitude; S0(z, r, t), S(z, r, t) are the regular and 
fluctuation components of the phase shift. 

It was assumed that χ << 1.  Then for the Fourier 
transforms of fluctuations of the logarithm of amplitude 
χ and phase fluctuations S along transverse coordinates 
we can write the following set of equations25,26: 

 
∂χ(z, i, t)

∂z
 $ 

i
2

2k
 S(z, i, t) = 0; 

 
∂S(z, i, t)

∂z
 + 

i
2

2k
 χ(z, i, t) + 

 + 2kp0 ⌡⌠
0

t

 χ(z, i, t′) e$(t$t′)λT
 

i
2

 dt′ = 0,  (8) 

where, !0 = αE0
2/(2ρcp) dε/(dT)  , [p0] = 1/s, i.e., 

the rate of variation of Δε, i is the spatial frequency. 
In addition to the set of Eqs. (8) the boundary 

conditions are presented as follows:  

 χ(z = 0, i, t) = χ0(i, t);  S(z = 0, i, t) = S0(i, t) 

and if we assume that fluctuations of the level and 
phase are statistically independent and 

 < χ0(i, t) χ0($i, t + τ) > = Fχ0
(i) e

$ pk 
| τ |

, 

 < S0(i, t) S0($i, t + τ) > = FS0
(i) e

$ pk 
| τ |

, (9) 

we can manage to obtain an analytical solution of this 
problem. If we take the limit τ0 → ∞ (i.e., pk → 0), 
neglect the heat conductivity, and assume that Fχ0

(i) = 

= 0, then the solution obtained for the fluctuations agrees 
very closely with the solution obtained in Ref. 16 for 
these conditions. 

The relation (9) is chosen to simplify the 
calculations in deriving the above solution.  A specific 
form of the τ-dependence is inessential, because the 
goal was to consider the situation when the time of 

coherence τ0 = pk
$1

 is much less than the time of nonlinear 
response of the medium. The derived solution has made 
it possible to determine the conditions under which the 
correlator splitting is possible in the equation for the 
coherence function.  If we consider the nonlinear 

refraction parameter RT = Ld
2/Lr

2 (Ld = ka2) and 
normalize the distance z to the length of thermal 

blooming Lr ($z = z/Lr), then this condition can be 
represented as 

 σχ0

2  $z
2
 RT 

λT τ0 rk

a3 (1 + λT τ0/rk
2)

 << 1. (10) 

This condition limits, at the top, the values of RT.  

However, for $z ∼ 1 the values of the parameter RT can 
be much higher than 1, under conditions that 

 σχ0

2  << 1;   λT τ0 << a2;   rk << a. (11) 

These conditions need not be fulfilled simultaneously. 

 

1.2. Radiation transfer equation  
in problems of thermal blooming 

 
For the purpose of further simplifying of Eq. (2) 

we perform the following expansion into a Taylor 
series: 

 Δε(z, R + ρ/2) $ Δε*(z, R $ ρ/2) = 

 = εr(z, R + ρ/2) $ εr(z, R $ ρ/2) + 

 + i [εi(z, R + ρ/2) + εi(z,R $ ρ/2)] ≅ 

≅ ρ∇R εr(z, R) + 2i εi(z, R) + i (
ρ

2
 ∇R)2 εi(z, R). (12) 

Note that the expansion (12) is exact for the 
parabolic profile of the complex dielectric constant.  
Let us then drop the last term in Eq. (12), i.e., use the 
approximation 

 Δε(z, R + ρ/2) $ Δε*(z, R $ ρ/2) ≅ 

 ≅ ρ∇R εr(z, R) + 2iεi(z, R) , (13) 

and substituting (13) in (2) and then, performing the 
Fourier transform over ρ, we derive the equation 

 
∂J

∂z
 + [i∇R + 

1
2
 ∇R εr(z, R) ∇

i
 + 

 + α(z, R)] J(z, R, i) = 0, (14) 
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where α is the absorption coefficient of the medium; 
α(z, R) = k εi(z, R); J is the Fourier transform of the 
coherence function 

 J(z, R, i) = (2π)$2
⌡⌠    ⌡⌠ 
$∞

 

∞

Γ2(z, R, ρ) × 

 × exp ($ ikiρ) dρ. (15) 

Note that Eq. (14) is equivalent to the radiation 
transfer equation (RTE) in a small-angle approximation, 
where J is the beam brightness or intensity.  In 
quantum mechanics the function J is called the Wigner 
function.  Strictly speaking, this name is more correct, 
because even if the function J satisfies Eq. (14), which 
is equivalent to RTE, but its characteristics do not 
fully correspond to the conception of brightness.  In 
particular, the function J can be negative and differs 
from zero at points where the intensity vanishes.27  

A remarkable feature of Eq. (14) is that it is of 
the first order in contrast to the initial equation for the 
coherence function Γ2.  The above procedures not only 
reduced the order of the equation but also the transfer 
was made from the complex function Γ2 to real function 
J.  Both of the cases are important when realizing the 

numerical algorithms of solving differential equations. 
The radiation transfer equation has long been in 

use.  It was derived first phenomenologically with the 
use of concepts of geometrical optics and has found a 
wide use in the classical theory of light transport.  
Later on the radiation transfer equation (RTE) was 
used with a success in the theory of neutron transfer.  
The relation between the RTE in a small-angle 
approximation and the equation for the second order 
coherence function obtained from the parabolic 
equation for the field was first determined in the 
Ref. 28 and then used in Refs. 27 and 29 to describe the 

radiation scattering in randomly inhomogeneous media. 
An essential fact that follows from these paper was 
determination of the electrodynamic meaning of the 
œradiation brightnessB concept. In Ref. 30 for 
statistically homogeneous media the RTE was derived 
from the equation of field coherence function in a more 
general case based  not on the parabolic equation but on 
the Helmholtz equation.  A more general case of 
statistically inhomogeneous media was considered in 
Ref. 31.  As the studies on nonlinear atmospheric optics 
have been being developed, the scientists focused on the 
RTE.  However, before the study described in Ref. 33 
was published, different simplifications were used in 
solving the RTE based on the nonaberrational 
approximation, the phase screen approximation, or the 

method of moments.16,32,34$38 
In Ref. 33 rigorous numerical solution of this 

equation for the axisymmetric case has first been 
carried out.  The solution was obtained by the method 
of characteristics, which is traditional for the first order 
equations.  These results have shown that it is 
impossible to generalize this algorithm to a five$
dimensional problems. 

It is essential to use additional approximations for 
solving such problems. As the above approximation, in 
Refs. 39 and 40, it has been first assumed that the 
asymptotic Laplacian method be used to calculate the 
integral representing general solution of the RTE.  The 
use of such an approach enables one to turn from the 
numerical calculation of the set of equation 

characteristics, connecting a point in a present radiation 
plane with all the points of the initial plane, to 
calculation of a reference characteristic (a ray of the 
maximum brightness39 or the geometrical optics ray40) 
or its first variations. Physically this means that the 

brightness distribution over angular coordinates at each 
point is approximated by a Gaussian distribution.  This 
has made it possible to decrease the bulk of calculations 
by about two orders of magnitude.  Using the methods 
of variation calculations and taking into account that 
the equations for the first variations are linear, a 
transition was realized in Ref. 40, with the use of 
Liouville formula, from setting the initial conditions to 
the given equations in the current plane to setting these  
in the initial plane.  This resulted in a decrease by more 
than one order of the bulk of calculations needed.  
Later on other authors41,42 have obtained, by making 
use of the idea of the Gaussian form conservation for 
brightness distribution, the solutions of the RTE. In 
Ref. 41, based on the square-law approximation for 
structure function of turbulent fluctuations of the air 
refractive index, an algorithm was realized, which 
enabled us to take into account  the turbulent 
broadening of a partially coherent beam along with the 
nonlinear refraction. 

 

1.3. Propagation of partially coherent  
radiation along the atmospheric paths 

 

A combination of Laplacian method and the 
variation method has made it possible to construct very 

effective algorithms and to pass, for the first time, to 

solving five-dimensional problems. In these calculations 
we considered only one type of nonlinearity, namely, the 
thermal steady state (wind) nonlinearity.  This is a 
consequence of the fact, that after intensive and not very 

successful seeking of effective modes for nonlinear 
propagation of high-power radiation along the 
atmospheric paths with different types of nonlinearity 
undertaken in the late 1970's, the scientists came to a 
conclusion that the way of avoiding the nonlinearity 
would be more effective.  As a result we considered the 
beams of continuous (quasi-continuous) radiation with a 

large aperture, propagating in the upper rarefied 
atmospheric layers.  In this case even for beams of 100-
kW power the radiation density was 102 W/cm2 that 
is at least two orders of magnitude below the threshold 

of manifestation of all the nonlinear effects except for 
the thermal one. 

The calculations were made of the propagation of 
high-power beams along extended vertical paths for 
wide-band partially coherent radiation. In the 
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calculations we must consider that the wind direction 
varies with height above the ground.43  This causes 
strong distortions of the intensity distribution shape in 
the beam cross-section (Fig. 1). 

 

 
Fig. 1. Intensity distribution at 9 km altitude of the initially 
Gaussian beam. 

 

1.4. Optimization of radiation  
propagation along the atmospheric paths.   

Optimization of the initial focusing 
 

The primary goal of investigations into the radiation 
propagation along the atmospheric paths is to formulate 
recommendations on how to  increase the efficiency of 
the radiation energy transfer. In the calculations on 
optimizing the partially coherent radiation focusing it 
was found that on vertical paths this focusing does not 
exhibit any peculiarities as compared with a coherent 
radiation.  For the paths with a nonlinear layer, 
adjacent to the source, the optimal focusing corresponds 
to the focusing at a point located in front of the 
receiving plane.44,45  A more precise focusing is required 

to compensate for the defocusing effect of this "nonlinear 
lens," and the region of the beam waist, while being 
important for homogeneous paths,44$46 produces no 
effect  because it lies outside the nonlinear layer of the 
medium. 

For extended slightly slant paths the solution of 
the problem on the optimal focusing is not single-
valued.  These paths are inhomogeneous because along 
them the altitude above the ground varies.  Maximum 
radiation absorption is observed at the path areas close 
to the surface.  For different paths these areas can be at 
the beginning, at the end or in the middle of the path. 
The focusing conditions can be selected depending on 
the above concepts.   

Now we consider the radiation propagation along 
the paths of 500 km long when the source is located at 
H0 = 10 km and the receiver at Hr = 15 km.  This 
means that the angle γ of the path inclination relative 
to the horizon at the site of source location is $1.7°, 
i.e., the path is directed downwards.  Essential 
nonlinear beam distortions were observed for such 

extended paths at a relatively small radiation density 

(≈ 10 W/cm2). The calculations made for three values 
of the angle of the initial radiation divergence, 
θd = a0/Ld (a0 is the initial beam radius being equal to 
1 m, Ld is the diffraction length of partially coherent 
radiation), θd = 2⋅10$6, 10$6, 2⋅10$7 have shown that 
14, 21, and 27% of power, reaching the receiving plane, 
fall within the receiving aperture, being a circle of 1-m 
diameter with its center at the original axis of the beam 

propagation.  The transmission of this path was rather 
high: T = 94% (only the molecular absorption was 
observed). For optimal distance of focusing the following 
values were obtained: F0 = 685, 750, and 745 km. 

Note that for all the values of θd the radiation 
should be focused outside the receiving plane.  The 
same behavior of the optimal focusing is typical for 
homogeneous paths. However, as shown in Ref. 44$46, 
for homogeneous paths, F0 monotonically increases  
with the decreasing θd value. This is because the 
nonlinear effects better manifest themselves on the 
homogeneous paths in the region of the focused beam 
waist. With a decrease in  θd  the power density in the 
waist increases, and the waist itself approaches the focal 
point. This path is not a homogeneous one. Its 
characteristic feature is that the effects of radiation 
absorption manifest themselves best of all at a distance 
of 185 km from the source where the path is most close to 
the Earth surface. In focusing outside the receiving 
plane, the beam power density is maximum at the end 
of the path or near its end (depending on the radiation 

power). 
Noncoincidence of the region with maximum power 

density and the region of maximum radiation absorption 
results in the occurrence of two competitive regions of 
manifestation of nonlinear effects and, as a consequence, 
in the nonmonotonic dependence of F0 on θd. 

Similar results for optimization of the focusing 
were obtained for other paths with the initial angle of 
inclination γ < $2°.  The calculations were made for the 
paths where the source and the receiver were located at 
altitudes from 10 to 25 km, and the path length was 
from 100 to 500 km.  For the  upward directed paths 
(γ > 0) another situation occurs, i.e., the optimal focal 
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length is less than the path length.  This happens 
because on these paths nonlinear effects manifest 
themselves in the initial portion of the path. 

A more precise focusing is required to compensate 
for the defocusing effect of this œnonlinear lens.B  Such 
a situation is characteristic of inhomogeneous paths, 
with a nonlinear layer adjacent to the source.44,45 

However, a simple conclusion that for the paths 
directed downward the radiation should be focused 
outside the receiving plane, and for the paths directed 
upward or horizontally, the focusing is required close to 
the receiving plane, follows from the calculations where 
the occurrence of the volcanic aerosol in the Junge 
layer in the stratosphere is not taken into account.  
This layer is at about 20 km altitude. As the 
calculations showed, when the beam propagated 
through the Junge layer, additional nonlinear 
distortions appeared due to absorption of radiation by  
aerosols.  This essentially complicates the qualitative 
analysis of the situation, and to solve the problem on 
the choice of the initial focusing the numerical 
calculations must be made for each beam and each 
particular path. 

 

1.5. Optimization of the radiation power 
 

Among the first studies in numerical simulations 
of the propagation of coherent laser radiation along the 
atmospheric path was the study presented in Ref. 47. 

The paper describes the results of investigations of 
the dependence of maximum intensity on the 
perturbation parameter 

 Nc =  
dn

dT
  

α I z2

ρ cp v a0
 (16) 

for different situations, namely, under conditions of 
beam scanning and without scanning, with the program 
phase correction and without it.  It is shown that the 
parameters of the path and the initial focusing affect 
essentially the value and position of maxima of these 
dependences.  When varying the value of the initial 
beam radius or the radiation wavelength, the slope of 
straight line changes, which corresponds to the 
propagation œwithout blurringB (i.e., diffraction 
propagation), and along with it the maxima positions 
change.  Attempts of many researchers to determine the 
regularities of the dependence of the maxima positions  
on the parameter Nc based on theoretical analysis by 
inserting the correction factors taking into account 
focusing, scanning, beam scintillation, and so on,48$50 
did not improve the results since the accuracy of the 
above investigations was not high.  Therefore the only 
way of solving this problem was the use of the 
numerical calculations of the laser beam propagation 
allowing for specific beam and path parameters.  The 
optimization was made based on different criteria that 
did not alter the character of the behavior of the 
optimization curves, but affected the values of optimal 
power.44,48 

For partially coherent radiation the situation 
becomes more complicated since one more parameter 
(coherence radius) occurs, on which radius the slope of 
a straight line depends, that corresponds to the beam 
propagation œwithout blurring,B and, hence, the shape  
of  the optimization curves.  However, based on the 
analysis of numerous calculations, made by the authors, 
we managed to determine stable characteristics of the 
optimal radiation propagation along different paths.  
Although this does not enable one to avoid numerical 
calculations, but provides for a drastic reduction of the 
required bulk of calculations. 

In the Ref. 43 we managed, based on analysis of 
numerical calculations of high-power radiation 
propagation along a vertical path, to find the 
coordinate system where all the results fall on a 
straight line, and to establish that the effective solid 
angles of the beam outside the nonlinear layer at 
optimal propagation exceed the diffraction angles by a 
factor of 1.7 for winter atmospheric model and by a 
factor of 1.9 for the summer one. 

From the above results it follows that if one 
manages to decrease the initial radiation beam 
divergence, then for the optimal propagation condition 
to be valid the initial power should be decreased by the 
same factor. In this case the effective power density 
increases by the same factor. A decrease in the initial 
divergence without an appropriate decrease of the initial 
power does not result in a marked increase of the 
effective intensity. 

A  criterion of optimal propagation, determined for 

vertical paths, turned out to be stable and manifested 
itself on slightly slant paths.  The calculations were 
carried out for different paths, which differ both in 
length and altitude of location of sources and receivers.  
Different values of optimal power density were 
obtained.  For the paths with the location of the source 
and the receiver at about 25-km altitude this power 
density exceeded by more than two orders of magnitude 
the corresponding values for the paths with the location 
of the source and the receiver at about 10 km altitude.  
However, in all the cases the conditions of optimal 
propagation corresponded to approximately the same 
nonlinear distortions.  And in all the cases an effective 
beam size exceeded the diffraction-limited size of the 
beam by 30$50%, that is, as for vertical paths, in this 
case for an effective beam area the condition 

 R
2
eff = (1.5 $ 2.2) R2

dif. (17) 

should hold. 
The value of the effective area increase can differ 

from two times, but this difference for most situations 
does not exceed 1.5 times.  Thus in the numerical 
determination of optimal conditions for beam 
propagation we can use the case that if Reff exceeds 
Rdif by less than 10%, then the value of the initial 
power is much less than the optimal one.  And the 
excess of Reff by more than two times as compared with 
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Rdif indicates that the initial power far exceeds the 
optimal one. 

Another one important criterion of the optimal 
propagation can be represented by the condition 

 Lr eff ≈ L, 

where L is the distance; Lreff is the effective length of a 
nonlinear refraction, which is determined as 

 L
$1
r eff = ⌡⌠

0

L

 (1 $ z/L) L$2
r (z) dz. (18) 

The length of a nonlinear refraction Lr is 
determined by the following expression: 

 Lr[km] = 0.85 
π a3 [m] v [m/s]

P [kW] α [m$1]
 , 

which gives the value of the refraction length in km 
when substituting the values of the appropriate 
parameters expressed in the dimensions, shown in 
brackets.  The type of this expression coincides with 
the traditional determination of the refraction length, 
but we substitute in this expression not the initial 
values of the beam radius (a), beam power (P), the 
values of transverse wind velocity (v), and the 
absorption coefficient (α) at the beginning of the path 
but their values varying along the path. 

 

2. Remote diagnostics of the laser beam 
power and phase characteristics 

2.1. Measurements of intensity  
and of its parameters’ distribution 

 

For  measuring characteristics of the laser beam of 
high power and a considerable transverse size51 the 
conventional techniques and devices used in the 
laboratory practice52,53 turned out to be not always 
applicable.  The use of matrices of receivers and 
bolometer networks54$56 was limited by low mobility 
and difficulty in use on the slant and vertical paths. The 

necessity arose of the development of techniques of 
remote diagnostics of spatial and power parameters of 
the laser beams. 

Owing to creation of infrared imagers57 intended 
for remote measuring the spatiotemporal distribution of 
temperature of heated surfaces, the possibility appeared 
of reconstructing laser beam intensity distribution based 
on the temperature distribution over a surface heated 
with the beam.  We have developed the thermophysical 
grounds for this technique of laser beam diagnostics.58$

61 
The problem of target heating by laser radiation 

formulated  as the problem for solving three-dimensional 
equation of thermal conductivity when a heat flux on a 
heated surface is given as well as the conditions of heat 
insulation or cooling of back surface, is reduced using 
the method of invariant immersion62,63 to the two-
dimensional equations of thermal conductivity for the 

temperature of target surface with the equivalent heat 
sources corresponding to boundary conditions.  Thus, 
for the heat regime of a œsemilimited bodyB the 
corresponding equation of thermal conductivity has the 
form 

 
∂

∂t
 T(ρ, t) $ λT Δ⊥ T(ρ, t) = $ 

1

8 π
3 λT

3/2
 × 

 × ⌡⌠
0

t

 dτ ⌡⌠
$∞

∞

 d2
ρ′ 

q(ρ′, τ)

(t $ τ)5/2 exp ⎝
⎜
⎛

⎠
⎟
⎞

$ 
(ρ $ ρ′)2

4λT(t $ τ)
  (19) 

for T(ρ, t) which is the temperature on the target 
surface; q(ρ, t) is the heat flux on the face surface 
connected with the intensity distribution over the  
beam cross section: 

 q(ρ, t) = (1 $ R) I(ρ, t) + ϑT(ρ, t) $ σbT
4(ρ, t). 

Here λT is the thermal diffusivity coefficient; ϑ is the 
heat transfer coefficient; b is the radiation coefficient; σ 
is the Stefan$Boltzmann constant; R is the reflection 
coefficient.  Using Eq. (19) for the heat flux, we 
obtain 

 q(ρ, t) = $ 
λq

8 π
3 λT

3/2
 ⌡⌠

0

t

 dτ ⌡⌠
$∞

 ∞

 d2
ρ′ 

T(ρ′, τ)

(t $ τ)
 × 

 × exp ⎝
⎜
⎛

⎠
⎟
⎞

$ 
(ρ $ ρ′)2

4λT(t $ τ)
 , (20) 

where λq is the thermal conductivity coefficient. 
Equations similar to (19), can be obtained for 

other thermophysical situations, important in practice, 
and the analytical relationships can be derived for 
reconstructing heat flux (and laser beam intensity 

distribution) according to the measured temperature 

distribution.64
  If the back surface of a heated target is a 

heat-protected, the analytical representation of heat 
flux on the target face surface is60,61: 

 q(ρ, t) = $ 
λq

4πλTL
 ⌡⌠

0

t

 dτ ⌡⌠
$∞

 ∞

 d2
ρ′ 

T(ρ′, τ)

(t $ τ)
 × 

 × exp ⎣
⎢
⎡

⎦
⎥
⎤

$ 
(ρ $ ρ′)2

4λT(t $ τ)
 
d
dτ

 θ1 ⎝
⎛

⎠
⎞1

2
, 

λT

L
2 (t $ τ)  ,  (21) 

where L is the target thickness; 

 θ1(ϑ, t) = 2∑
n=0

∞

 ($ 1)n × 

 × exp ($ π2 (n + 1/2)2 t) sin π(2n + 1)ϑ. 

For thermally thin targets64 the equation for 
reconstructing the heat flux takes the form 

 q(ρ, t) = 
λq L

λT
 ⎣
⎡

⎦
⎤∂T

∂t
 (ρ, t) $ λT Δρ T(ρ, t)  . (22) 
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If we have integral representations for 

reconstructing the heat flux, the relationships can easily 
be obtained to determine the laser beam integral 
parameters such as: 

the radiation flux (laser beam power) 

 P(t) = ⌡⌠
$∞

 ∞

 d2
ρ I(ρ, t), (23) 

the vector of the center of gravity of the beam 
intensity distribution 

 R“ {R“ x, R“ y} = iR“ x + jR“ y = 

 = 
1

P(t)
 ⌡⌠
$∞

 ∞

 I(ρ, t) ρ d2
ρ, (24) 

the effective beam radius ρe determined by the 
relationship: 

 ρ
2
 e = ρ 2

x e + ρ 2
y e = 

1
P(t)

 ⌡⌠
−∞

 ∞

 I(ρ, t) ρ2 d2
ρ. (25) 

In the case of, for example,  a heat insulated 
target we have for a total flux the following 
expression: 

 P(t) = $ 
λT

L(1 $ R)
 ⌡⌠

0

t

 dτ M0(τ) × 

 × 
d
dτ

 θ1 ⎝
⎛

⎠
⎞1

2
, 

λT

L2 (t $ τ)  , (26) 

where 

 M0(t) = ⌡⌠
−∞

 ∞

 T(ρ, t) d2
ρ. 

The effective beam radius is 

 ρ
2
e = $ 

 λq

L(1 $ R)P(t)
 ⌡⌠

0

t

 dτ × 

 × [MT2(τ) + 4χ(t $ τ) M0(τ)] 
d
dτ

 θ1 ⎣
⎡

⎦
⎤1

2
, 

λT

L2 (t $ τ)  , 

where 

 MT2(t) = ⌡⌠
−∞

 ∞

 T(ρ, t) ρ2 d2
ρ 

is the moment of temperature inertia. 
Because analytical relationships of the type (21) 

are the spatiotemporal convolution of the temperature 

distribution with multidimensional singular generalized 
functions,65,66 the problem was solved on canonical 
regularization of the obtained functional expressions to 
develop numerical algorithms.67 

The inverse problems of heat conductivity (IPHC) 
and the particular IPHC on recalculating boundary 
conditions, which is to be solved, refer to the class of 
ill-posed problems.  The fact that it is ill-posed follows 
from the form of the obtained analytical relationships 
containing either differentiation of experimental data or 

a power singularity, that is equivalent to the 
differentiation, of a kernel of the integral relationship, 
which represents the solution of inverse problem.  
Therefore it is necessary to study stability of the 
problem on reconstructing the heat flux from data on 
temperature field with due regard of a random noise 
and to develop the reconstruction algorithms taking into 

account the measurement errors of the spatiotemporal 
distribution of temperature.  Numerical simulation as 
well as the inversion of data of laboratory measurements 
make it possible to determine the accuracy and spatial 
resolution of algorithms constructed based on analytical 
solutions of the inverse problem. 

Figure 2 shows the results of reconstructing heat 
flux for the case of a thin target (22),68 which is a 
rectangular plate of x0×y0 size, and the temperature 
measurements are carried out at the time 0 < t < tmax. 

A frequency-difference  analog of equation (22) 

over spatial and temporal coordinate was used.68  In 
this case we applied the filtration  of temperature data 

by an  optimal filter constructed on the basis of the 

Tikhonov smoothing functional.69
  An automated 

infrared imagery was used to measure the temperature 
distribution over the target surface.70,71  Its parameters 
and  the experimental conditions are described in Ref. 64.  
As the initial data we used 25 series frames of temperature 
distribution with the  time interval 0.4 s with the 
spatial resolution 100×100 points. The result of the heat 
flux reconstruction from the measured values of 
temperature without noise suppression is shown in 
Fig. 2a. 

Figure 2b shows the result of heat flux 
reconstruction with the use of a regularizing factor 
sinc(x).  It is seen that in processing the image the 
artifacts, i.e., negative intensity values occur.  The 
reconstruction of the heat flux using a regularizing 
algorithm (FFT) with the optimal Tikhonov filtration is 
shown in Fig. 2c.  Figure 2 shows that the intensity 
distribution is close to a single-mode one.  A 
comparison of the reconstructed and measured effective 
beam radii and focusing functionals (beam power is 
within the limits of a specified aperture) enables us to 
consider the  results of reconstruction to be quite 
satisfactory ones. 

Since the above method excludes the possibility  
of simultaneously obtaining data on laser radiation 
characteristics and the transient meters54$56  
available introduce additional distortions in the laser 
beam and do not provide measurements along slant 
paths, we have developed theoretical grounds for a 
tomographic method of reconstruction of the integral 
parameters of laser beams based on the brightness 
values of radiation scattered by a propagation 
medium.72,73 

The problem of reconstruction is formulated as the 

problem of three-dimensional computational tomography, 
since using the transfer equation76 one can determine64 
that the brightness of scattered radiation J(r, Ω) and 
the laser beam intensity distribution I(r) are connected 
by the integral Radon transform77: 
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Fig. 2. Reconstruction of the heat flux, W/cm2, is an example of processing data of a laboratory experiment; (a) heat flux 
reconstructed without filtration of measured temperature values; (b) heat flux reconstructed with the use of nonoptimal sinc-
filter64; (c) heat flux reconstructed using the regularizing algorithm (FFT) with the optimal Tikhonov filtration. 
 

 J(r, Ω) = (1/4π) σs(r0) f(r0, ϕ) × 

 × exp [$ τ(r0, r)] ⌡⌠
0

∞

 dR I(r $ RΩ), (27) 

where Ω, Ω0 are the unit vectors of the observation 
direction and the laser beam axis direction; σs(r) is the 
volume scattering coefficient; f(r, ϕ) is the scattering 
phase function; ϕ = arccos(ΩΩ0), r0 is the central 
coordinate of the region where  the sight line and the 
laser beam intersect; τ(r0, r) is the optical thickness of 
the medium. 

The estimations of the irradiance within the 
scattering volume image constructed with the receiving 
telescope, being a recorder of projection data for optical 
models of the Earth’s atmosphere, including aerosol and 
molecular scattering of light, enable us to draw a 
conclusion about the prospects of reliable detection of 
the Radon projections of a laser beam from significantly 
high altitudes and about technical feasibility of the 
tomographic method in the Earth’s atmosphere, 
including slant paths. 

In Ref. 72  the calculating formulas and algorithms 
are given, which make it possible to determine the 

integral beam parameters omitting the stage of 
reconstruction of the intensity distribution. It is shown 
there that the reconstruction of the intensity 
distribution normalized to the total power and integral 
criteria of the beam quality can be established without 
the data on scattering and absorption characteristics of 
the medium. The numerical experiments showed  that 
the reconstruction of integral criteria of the laser beam 
quality directly from the projection data does not lead 
to any loss of the reconstruction accuracy, as compared 
to the integration of the reconstructed intensity 
distribution, while, at the same time, makes the 

reconstruction faster by more than one order of 
magnitude. Because we considered scattering of a laser 
beam by the Earth’s surface in a linear approximation, 
i.e., without the account of the spatial modulation of  
its scattering properties by the radiation, the 
applicability of the developed algorithms is limited. 

 

2.2. Determination of phase distortions 
 

The development of coherent adaptive optical 
systems with the wave front control resulted in the 
formulation of the problem on wave front sensors $ the 
problem of measuring phase distortions introduced by  
the atmosphere.  The results of this problem solution have 

been generalized at certain stages.44,78$81
  However, the 

problem has arisen on evaluating the quality and 

improving efficiency of the current methods of wave 

front reconstruction. Moreover, the development of 
methods of phase reconstruction was far from being 
completed from the viewpoint of completeness of the 
data  on measured wave front as well as of the 

possibilities of using for such a reconstruction the entire 
scope of phenomena connected with the diffraction and 
interference of laser beams. 

Thus, for measuring phase distortions the 
instruments are used that allow one to estimate the wave 
front tilts. Among these instruments the Shak$Hartmann 
sensor is widely used. This device is a matrix of  
focusing elements whose apertures split the incident 
radiation being studied into partial beams. 

The measured, with such a sensor, results must be 
transformed to the values of the phase itself.  The 
available methods of such a transformation82$84 do not 
allow effective estimation of the quality of wave front 
reconstruction to be made in the presence of noise as 
well as to select the  subaperture shapes and the sensor 
position depending on the radiation geometry. 
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Fig. 3.  Phase distribution within the entrance pupil:  initial distribution (a) and reconstruded one using Eq. (28) (b). 

 
 

It turned out to be quite a specific problem to 
measure the wave phase under conditions of strong 

atmospheric turbulence when the wave front dislocations 
can appear.85,86

 To overcome these difficulties we use an 

analytical representation connecting the phase with the 
value of its partial derivatives64,87: 

 S(x,y) = 
1
2π⌡⌠

 c

S(x′,y′) (y − y′) dx′ − S(x′,y′)(x − x′)dy′

(x′ $ x)2 + (y′ $ y)2  + 

+ 
1
2π ⌡⌠ 

 
   ⌡⌠ 

 

D

dx′dy′ 
μ(x′,y′) (x − x′) + ν(x′,y′)(y − y′)

(x′ $ x)2 + (y′ $ y)2  . (28) 

Equation (28) expresses the phase in terms of the 

values of partial derivatives μ(x′, y′) = 
∂

∂x
 S(x, y), 

ν(x, y) = 
∂

∂y
 S(x, y) (wave front tilts) within the 

entrance pupil D and the phase value  on the contour Γ 
limiting it. 

This approach enables us to overcome the 

conditional separation into zonal and modal methods of 
phase measurements and representation in the systems 
of adaptive  optics and to obtain the amplitude of modes 
regardless of the wave front approximation: 

 S(r) = ∑
k=0

∞

 bk Ψk(r),  (29) 

where 

 bk = ⌡⌠ 
 

   ⌡⌠ 
 

D

S(r) Ψk(r) d2r , (30) 

that is performed by use of the basis functions Ψk(r) be 
it Zernike polynomials or Walsh orthogonal modes, 
Haar functions, finite or boundary elements.  In the 
numerical experiment on reconstruction of the phase 
and coefficients of its series expansion over a basis of 
Zernike polynomials the efficiency of the proposed 
approach was proved in constructing the control 
algorithms of wave front correctors for the adaptive 
optics systems.88,89  The reconstructed function 
S2(x, y) is presented in Fig. 3b. 

Such an approach was found to be also 
promising90,91 in solving the problem of obtaining 
optimal, as averaged over an ensemble, the phase 
expansions over modes. 

For such expansions the problem is formulated for 
minimization of an average over ensemble error energy 
<ε2>, where 

 ε2 = ⌡⌠ 
 

   ⌡⌠ 
 

D ⎣
⎢
⎡

⎦
⎥
⎤

S(r) $ ∑
k=0

N

 bk Ψk(r)  

2

 d2r, (31) 

and the basis Ψk(r), using which this minimum is 
achieved, is called the Karunen$Loev$Obukhov basis.  
In Refs. 90 and 91 the possibility is demonstrated of  
representing the optimal mode expansions over any (set 
by a wave front corrector) system of functions. 
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In Ref. 92 we propose the principles of operation 
of a tomographic wave front sensor, in which the phase 
reconstruction is performed using measurement data on 
integral moments  of the intensity distribution formed  
by the receiving objective in its  focal plane at different 

positions of the diaphragm providing for tomographic 
scanning. The results of theoretical analysis and 
numerical simulation of this sensor have shown that at 
high precision of orientation of scanning and having 
measured position of the image center of gravity this 
method can not only offer major advantages of the 
Hartmann method over the interferometric one but also 
can provide for the precision of the latter. 

As already mentioned, the reconstruction of the 
phase distribution of optical beams propagating in the 
atmosphere under conditions of strong turbulence, when 
the transverse intensity pattern clearly exhibits a 

speckle structure  and when the wave front  dislocations 
can occur, has become quite a special problem.  The 
dislocations, decreasing essentially the efficiency of 
light energy transportation, are found to be œhiddenB 
for the wave front sensors of the available adaptive 
systems.86 

A generalization of the semi-analytical approach87
 

based on the potential and vortex properties of the 
vector field of phase gradient92  enables one to  make  
the dislocation (singular) phase distribution œvisible.B 

In this paper we have considered some aspects of a 
sophisticated complex problem on propagation of high-
power laser beams through the atmosphere.  The results 
of the investigations have been obtained at the Institute 
of Atmospheric Optics SB RAS in the past 15 years.  
Considerable attention has been given to the theoretical  
studies of the problems that could be of interest, in our 
opinion, to the readers, and which have not been 

sufficiently studied in the monographs published until so 
far. 
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