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The methodology of constructing databases for interpreting the measurements of backscattering 
phase matrices (BSPM) of the upper-level clouds is presented. The beam splitting method is used for 
calculation of the BSPM of hexagonal prisms. The influence of orientation of ice hexagonal plates and 
columns on the BSPM is studied. The process of formation of rays mostly contributing into the 
backscattering is under analysis. The BSPMs were computed for monodisperse ensembles of randomly 
oriented ice hexagonal plates and columns. All calculations were made for incident radiation at 
λ = 0.55 μm and the refractive index m = 1.311 (the absorption is ignored). 

 

1. Introduction 
 

The upper-level clouds consist principally of non-
spherical water ice crystal particles having shapes of 
hexagonal plates and columns. At present, large bulk of 
data are available on the peculiarities of angular light 
scattering on randomly oriented water ice crystals.1$6  
Such an intent attention to this problem is caused, first 
of all, by an increased interest in the study of the effect 
of cirrus clouds on the radiation transfer through the 
atmosphere, as well as on the distortion of signals 
transmitted from onboard a spacecraft. 

The problem on scattering properties of anisotropic 
media of water ice crystals has so far been studied too 
poorly, especially regarding the backscattering. The  
papers available from literature are based on simplified 
models of water ice crystals: round plates, round 

cylinders, and spheroids.7$9 
An attempt is undertaken in this paper to develop 

a complex approach to interpretation of data of 
polarization lidar measurements in cirrus clouds, i.e., 
the methodology is described of creating databases for 
interpretation of polarization sounding data on the 
upper-level clouds. 

 

2. Method for calculation 
 

A lot of methods have been developed up to date 
for studying the light-scattering properties of water ice 
crystals1$2 on the basis of the geometrical analysis of 
propagation of rays inside a polyhedron according to 
the Snell and Fresnel laws (method of ray trajectories). 
It is a disadvantage of some of them that the 
contribution of outgoing rays to the total scattered 
field is accepted in the form of δ-function, what, when 
calculating, inevitably leads to significant errors in the 
calculated scattering characteristics, especially for the 
backscattering, due to a finite grid of the scattering 
angles. The disadvantage of other methods is that the 
set of calculated scattering characteristics is incomplete.  
The most comprehensive approach was developed in 
Ref. 5, in which the method of ray trajectories is used for 
determining the field in the near zone on the crystal 
surface, and then the field in the far zone is determined 

on the basis of the theorem of electromagnetic 

equivalence. However, the use of computer codes created 
on the basis of this method for a personal computer is 

difficult due to long computation time. 
The method proposed in Ref. 10 is also very 

promising. It considers not the rays at interaction with 
a polyhedron, but beams. A beam is a set of rays (equal 
to the point set on the plane), which were subject to 
identical interactions with the same sides at the output 
of a polyhedron (except for the external reflection). At 
the first interaction of a plane wave with any side, the 
cross section of the reflected beam is its projection on 
the plane perpendicular to the reflected beam direction. 
Analogous reasoning applies to the beam refracted 
inside the polyhedron after first interaction with a side. 
The refracted beam can be incident on several sides, 
i.e., the splitting of the beam occurs at the edges and 
vertexes. It is clear that after each internal reflection 
the cross sections of the beams going out of the 
polyhedron have a polygonal shape, and their areas 
decrease (except for the cases when the beam 
completely coincides with one of the sides). Integration 
over the beam cross section gives the contribution along 
all directions to the scattered field in the far zone. 
Then the fields are summed up over all outgoing beams. 

Unfortunately, realization of this approach 
presented in Ref. 10 has some disadvantages: 
mathematically bulky method of ray trajectories, 
neglection of the diffraction contribution, the Stokes 
parameters of the scattered field rather than the 
scattering phase matrix used as output parameters. 

However, because this approach allows one to save 
computation time, my choice is to modernize it. 

When developing the program for computation of 
light scattering on convex polyhedrons based on the 
beam splitting method (BSM), the technique was used 
for calculating the amplitude matrices of the beam 
outgoing from the polyhedron,5 as well as the algorithm 
for determining the boundary points of intersection of 
two plane polygonal areas.10 

All other algorithms have been developed by the 
author. The algorithm for determining the 
contribution of the outgoing beam is presented in 
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Appendix. The contribution of diffraction on the 
polygonal shadow of a crystal is computed in the 
standard way1 with the use of the algorithm described 
in Appendix. 

 

3. Backscattering phase matrix (BSPM)  
of a monodisperse ensemble of arbitrarily  

oriented hexagonal crystals 
 
Let us set a hexagon size by means of the 

following parameters. Let L be the length along the 
symmetry axis and a be the radius of the circle 
circumscribed around the hexagonal base. Normally  
such bodies are called hexagonal columns at L > 2a, 
and hexagonal plates at L < 2a. 

Let us describe the geometry of the scattering of 
radiation on an arbitrarily oriented hexagon. Let us 
define the coordinate system Oxyz (Fig. 1) related to 
the incident radiation as follows: Oz axis coincides 
with the direction of radiation incidence, and the 
polarization state of the incident radiation is set 
relative to the xOz plane (reference plane or basis 
plane of the lidar). Let the coordinate system O'x’y’z’ 
be obtained from the Oxyz by rotating it by three 
Euler angles α, β, and γ and be related to the hexagon 
as follows: the point O is at the center of the hexagon, 
Oz’ axis is the symmetry axis of the hexagon, and Ox’ 
axis is perpendicular to one of its sides. 
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Fig. 1. Geometry of scattering on an arbitrarily oriented 
hexagonal crystal. 
 

Thus, β is the angle between the radiation 
incidence direction and the hexagon axis, α is the 
angle between the reference plane and the plane 
containing the radiation incidence direction and the 
hexagon axis, and γ is the angle of rotation around 
the hexagon axis. We always mean averaging over 
this angle with the probability density 3/π, i.e., if 
S′(α, β, γ) is a BSPM of an arbitrarily oriented 
hexagonal crystal, then the BSPM averaged over the 
angle γ takes the form 

 S(α, β) = 
3
π ⌡⌠

0

π/3

  S′(α, β, γ) dγ. 

One can express S(α, β) through M(0, β) (at α = 0, 
the axis of hexagonal crystal lying in the reference 
plane) as follows: 

 S(α, β) = R(−α) M(0, β) R(−α), (1) 

where R(α) is the transformation matrix of the Stokes 
parameters at rotation of the reference plane by the 
angle α: 

 R(α) = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞1 0 0 0

0 cos2α sin2α 0
0 $sin2α cos2α 0
0 0 0 1

 . 

To find P, which is the BSPM of a monodisperse 
ensemble of hexagonal crystals polyoriented with the 
probability density of angular distribution g(α, β), one 
should integrate over the full solid angle:  

P = ⌡⌠
0

2π

 ⌡⌠
0

π

 R($α) M(0, β) R($α) g(α, β) sinβ dβ dα.(2) 

Due to the symmetry of backscattering and the 
hexagonal crystal shape, one can take the limits of 
integration over α, in Eq. (2), from 0 to π and from 0 
to π/2 when integrating over β. 

Thus, to obtain the backscattering phase matrix of 
a monodisperse ensemble of arbitrarily oriented 
hexagonal crystals, it is necessary to calculate the 
matrix M(0, β) with quite a small step in the angle β 
and to save it as a Table (averaging over the angle γ for 
every fixed angle β). 

Let us note that the matrix M(0, β) consists of 
eight non-zero elements, five of which are linearly 
independent, 

 M11(0, β) $ M22(0, β) = M44(0, β) $ M33(0, β); 

 M21(0, β) = M12(0, β);  M43(0, β) = $ M34(0, β). 

Upon accumulation of quite a large bulk of 
calculated data for different crystal sizes, one can 
calculate the backscattering phase matrix for the 
polydisperse ensembles of particles. 

 

4. Calculated results 
 
To test the program for calculating the 

scattering characteristics of hexagonal crystals, we 
have calculated elements of the scattering phase 
matrix (SPM) of an ensemble of randomly oriented 
hexagonal water ice crystals with the size 
a = L = 180 λ/(2π), k = 2π/λ at the wavelength of 
the incident radiation λ = 0.55 μm and the refractive 
index of 1.311, while calculations of the 
backscattering, θ = π, were performed by the 
technique described in the previous section. The 
calculated angular dependences of the four SPM 
elements: P22/P11, P33/P11, P44/P11, and P34/P11, 
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are shown in the left panels of Fig. 2, and analogous 
dependences of the SPM elements calculated in Ref. 5 
by the geometrical optics method of integral 
equations (GOM2) are shown in the right panels of 
Fig. 2 (solid lines). The comparison of the curves 
shown in Fig. 2 shows that there are small differences 
(about 5%) in the values of the aforementioned 
elements principally in the range of large scattering 
 

angles. The comparison was also carried out for the 
SPM elements of ensembles of randomly oriented 
hexagonal columns (a = 60 μm, L = 300 μm, 
n = 1.31, λ = 0.55 μm) and plates (a = 10 μm, 
L = 8 μm, n = 1.31, λ = 0.6328 μm) calculated by the 
author using BSM with analogous elements calculated 
in Ref. 2 by the method of ray trajectories (GOM1). 
The calculated results are presented in Table 1. 

 

 
 

Fig. 2. The elements of the scattering phase matrix of hexagonal water ice plates randomly oriented in space. The results for 
backscattering are shown by dotted lines. 
 

Table 1. 
 

Elements of Columns Plates 

BSPM BSM GOM1 (Ref. 2) BSM GOM1 (Ref. 2) 

P22/P11 0.69 0.26 0.58 0.44 

P33/P11 −0.69 −0.26 −0.58 −0.44 

P44/P11 −0.38 0.48 −0.16 0.12 
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The comparison of calculations made by the 
author with the analogous ones available from 
literature2 shows that there are significant differences 
in the values of three BSPM elements (P12/P11 = 
= P34/P11 = 0). First of all, one should note the high 
values of P44/P11 and P33/P11 and the small ones of 
P22/P11 for the backscattering data presented in Ref. 2 
as compared with the data calculated by the author. 
Let us note that the aforementioned BSPM elements 
calculated by BSM agree better with the experimental 
measurements.11 

As mentioned above, the GOM1 method used by 
authors of Refs. 2 and 6 has a number of disadvantages 
inherent in the classical geometrical optics approach. In 
particular, as noted in Ref. 2, this method contains 
some ambiguities in calculation of the contribution to 
the scattered field from the beams leaving the crystal at 
the scattering angles θ = 0 and 180° what relates to the 
presence of the factor 1/sinθ in the weight coefficients 
of the scattering amplitude for the outgoing beams.  
This leads to infinite scattering intensities in the 
forward and backward directions. To avoid this, the 
authors of Ref. 2 suggest to use the values θ = 0.5° and 
179.5°, respectively, when calculating the weight 
coefficients of the beams leaving a crystal in the forward 
and backward directions, what should inevitably lead to 
large errors in the calculated values of P22/P11, 
P33/P11, and P44/P11. There is one more ambiguity of 
the same character, i.e., the presence of the factor 
1/sinθk in the formula for calculating the differential 
scattering cross section (θk is the node of the grid of the 
polar scattering angles) in the method described in Ref. 12. 
Unfortunately, the authors of Ref. 5 compare the 

angular dependence of only two SPM elements, P11 and 

$P12/P11, calculated by the GOM1 (Refs. 1 and 2) and 
GOM2 (Ref. 5) methods, while it is much more 
interesting to compare other SPM elements. It is noted 
in Ref. 5 that the values P11 calculated for the 
backscattering by GOM2 are larger than the values of 
this element calculated by GOM1. 

As numerical experiments show, the values of the  
elements P22/P11, P33/P11, and P44/P11 of the 
BSPM of ensembles of randomly oriented hexagonal 
crystals at θ = 180° strongly depend on the construction 
of the grid of orientations over the angle α, and so one 
should perform calculations of the BSPM elements of 
randomly oriented crystals by the technique described 
in Section 2 (averaging over the angle α is done 
analytically by Eq. (2)). 

Before analyzing the dependence of the BSPM 
M(0, β) elements introduced in Section 2, for which 
the averaging over the angle γ is supposed, it is 

interesting to study the dependence of M ′
11(0, β, γ) on 

the angle γ at fixed values of the angle β. Such 
dependence is shown in Fig. 3 for four β values. 
Calculations are carried out for a hexagonal water ice 
column with L = 400 μm and = = 65.72 μm. Let us also 
note that all calculations discussed in this paper have 
been performed for the radiation at the wavelength 
λ = 0.55 μm and the refractive index n = 1.311 (the 
absorption is neglected), and the relationship between a 
and L is calculated by the empirical formula 

 L = A(2a)
ρ

, 

where A and ρ are the constants whose values for 
columns and plates can be found in Ref. 13. 
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Fig. 3. The dependence of BSPM element M ′
11(0, β, γ) on the angle γ at fixed β angles: β = 90, 75, 45, and 32°. 
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Fig. 4. The dependence of the BSPM elements on the angle β for an ensemble of hexagonal plates uniformly oriented around  
the axis. 

 

As seen in Fig. 3, there is a well pronounced 
maximum at the point γ = 0 for all values of β. After 
that the values of M11 sharply decrease by one or two 
orders of magnitude as ⏐γ⏐ tends to 1°. There are also 
quite wide, in comparison with the central peak, 
symmetrical side maxima, the values of which are up to 
10% of the central peak value (γ = 0°), and their 
position on the γ axis is determined by the value of the 
angle β. Thus, the behavior of the BSPM, as a function 
of the angle β, is mainly determined  by the hexagonal 
crystals with the orientation at γ = 0°.  However, one 
cannot ignore the contribution of other orientations; so, 
it is always necessary to average, due to their rotation 
symmetry (of the 6th order) over the angle γ in the 
range [$π/6, π/6] with the probability density 3/π. 
One can estimate the contribution from particles 
oriented at γ ≠ 0° to the average BSPM at the fixed 
values β by the value of the difference Δ(0, β) = 1 $

 l22(0, β)/l11(0, β), because l ′
22(0, β, 0)/M ′

11

(0, β, 0) = 1 at all values of β. 
The angular dependences of the BSPM M(0, β) 

elements for a hexagonal water ice plate with the 
diameter 2a = 400 μm and thickness L = 30.64 μm, 

averaged over the angle γ, are shown in Fig. 4. 
Averaging over the angle γ was done with the step 

Δγ = 0.05°. 
As geometrical analysis of the process of formation 

of the beams outgoing in the backward direction, 
except for the values close to β = 0 and 90°, shows, the 
beams, for which three following conditions are 
satisfied, make the principal contribution to the 
backscatter.  The conditions are: 

$ the beams are formed after even number of 
interactions with the sides (including the first external 
one); 

$ the beams go out of the same side of a crystal 
that has generated them at the first interaction; 

$ three subsequent internal interactions with the 
three neighboring mutually perpendicular sides 
necessarily take place. 

Let us perform more detailed analysis of these 
processes by an example of hexagonal plates. Figure 5 
shows the plate cross sections (γ = 0°) across its axis 
and the normal of two opposite tetragonal sides c 1 and 
c 2. The arrows show the aforementioned processes: (a) 

the beam goes out of the hexagonal base O1 (Fig. 5a); 



D.N. Romashov Vol. 12,  No. 5 /May  1999/ Atmos. Oceanic Opt.  
 

381

(b) the beam goes out of the side c 1 (Fig. 5b). The 
beams of only the 4th and 6th multiplicity of 
interaction are shown in Fig. 5. However, it is clear 
that the beams of higher even multiplicity can be 
formed at some values of a and L. Once changing the 
arrow directions in Fig. 5, we obtain the pattern of 
formation of mutually inverse beams which are 
equivalent to the initial ones in their contribution to 
the backscatter. The values of the cross sections of the 
outgoing beams are determined by the values of the 
parameters β, a, and L. 
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Fig. 5. Mechanisms of formation of the beams on the 
hexagonal plates at γ = 0°, which give the highest contribution 
to the backscatter at a slant incidence of radiation. 

 

Let us analyze in a more detail the behavior of the 
BSPM elements as functions of the angle β for the 
hexagonal plates based on the aforementioned processes 
(γ = 0°). Let us first find the value ε, which is the 
angle of the total internal reflection for water ice: 
ε = arcsin(1/1.311) ≈ 49.7°, which takes place for the 
processes "a" on the side c 2 (see Fig. 5a) when 
0° < β < 58° and processes "b" on the bases O1 and O2 
(see Fig. 5b) when β > 32°. The contribution of the 
process "a" increases as β increases up to 58° due to the 
increase of the cross sections of the outgoing beams, 
because L << 2a, and the increase of the total internal 
reflection coefficient from the bases, until the total 
internal reflection from the side c 2 stops. The 
contribution of the process "b" is significant since 
β = 32° (the total internal reflection on the bases O1 
and O2 appears, and the outgoing beams are formed 
after multiple reflections from these bases), the cross 
section of the beams of the fixed even multiplicity 
sharply increases and then decreases within a narrow 
range of β values, because L << 2a. The beams of higher 
multiplicity contribute at smaller β values, and vice 

versa. Thus, one can interpret the behavior of M11 in 
Fig. 4 as follows. The highest value of M11 (see 
Fig. 5a) occurs at β = 0, when 2nL = (m + 1/2)λ, or 
at β close to 0°, when  

 2nL (1 $ sin2β/n2) = (m + 1/2)λ (3) 

(m is an integer number). In this case the plate bases 
O1 and O2 remain practically perpendicular to the 

direction of radiation incidence, all reflected and 
multiply refracted beams go out near the forward and 
backward directions (in the area of the first peak of the 
Fraunhofer integral, see Appendix) only through the 
bases, and their amplitudes are summed up. It is 
confirmed by the behavior of l11(0, β) near β = 0 (the 
step is Δβ = 0.01°) for the hexagonal crystals of the 
length L = 400λ/n shown in Fig. 6 where the 
condition (3) is satisfied at β ≈ 0.07°. 
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Fig. 6. The dependence of the BSPM element M11(0, β) on 
the angle β for a hexagonal crystal in the range from 0 to 1°. 
 

Similar reasoning apples for β = 90°, but in this 
case not all refracted and reflected light beams go out 
in the backward direction, and the cross sections of the 
beams are significantly less. l11 monotonically 
increases in the range 0° < β < 42°, because the main 
contribution comes from the process "a". The 
contribution in the range 42° < β < 90° is caused by 
the interference of the outgoing beams resulting from 
the processes "a" and "b" with the prevailing 
contribution from the process "a" in the range 
42° < β < 60° and of the process "b" in the range 
60° < β < 90°. So, l11 periodically oscillates, first it 
increases and reaches maximum at the point β ≈ 58° and 
then decreases. The number of local maxima is 
determined by the ratio L/a and p that is the number 
of interactions to be taken into account. It equals to 
p/2 for thin plates. Up to 16 interactions were taken 
into account in calculations presented in Fig. 4. Let us 
note that the peaks near β = 0 and 90° are very narrow 
compared with the contribution from other orientations. 
In contrast to the aforementioned results, only one well 
pronounced maximum of l11 in the range 0° < β < 90° 
was found at β ≈ 32° when calculating BSPM of 
hexagonal water ice crystals, as well as two 
significantly lower local maxima at β = 0 and 90°. 

Let us present here the qualitative analysis of the 
dependence of the BSPM element M12/M11 on β (see 
Fig. 4). One can explain the monotonic decrease of this 
element to $1 as β increases from 0 to 52° by the fact 
that the processes of the "a" type make the principal 
contribution to the backscatter, and for them the total 
internal reflection coefficient from the plane parallel to 
the plane of the electric field vector incident on the 
bases n 1 and n 2 (see Fig. 5a) monotonically decreases 
(as β increases) and becomes equal to zero at β = 52° 
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(Brewster angle for water ice). Hence, the intensity of 
the backscattered light is maximum within the range 

40° < β < 60° when it is polarized perpendicularly to 

the incidence plane (coinciding with the reference plane 
at α = 0°). Note that one can interpret BSPM (see Fig. 
4) as a BSPM at the slant sounding (zenith angle of 
sounding is equal to β) of an ensemble of hexagonal 
water ice plates, the axes of which are oriented 
vertically, while being uniformly distributed over the 
angle γ. 

The behavior of M22/M11 within the range 
40° < β < 60° shows that the contribution coming from 

particles with the orientations at γ ≠ 0° is very significant 

(l ′
22(0, β, 0)/l ′

11(0, β, 0) = 1). 
The dependences of the BSPM elements M(0, β) 

are shown in Fig. 7 for a hexagonal water ice column 
with the diameter 2a = 131.44 μm and the length 
L = 400 μm. The aforementioned considerations 
regarding the plates apply to columns either, because in 
this case the bases and sides exchange their parts, and 
so the largest value of l11 occurs at the point 
β = π/2.  If βp has been one of the characteristic  
angles in Fig. 4, the respective angle in Fig. 6 is 
β“ = π/2 $ βp.
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Fig. 7. The dependence of BSPM elements on the angle β for an ensemble of hexagonal columns uniformly oriented around the 
axis. 

 

Let us note that there are only two local maxima 
of l11 in Fig. 7, because their quantity is determined  
not only by the number of interactions, which are taken 
into account, but also by the ratio of the maximum to 
minimum size of a crystal, which is significantly less 

for columns than for plates, calculated results for which 
are shown in Fig. 4. 

Let us note in conclusion that the calculations 
carried out by the method of ray trajectories1,2 or 
geometrical optics12 cannot be satisfactory for studying 
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the backscatter, because they yield infinite intensity of 
radiation at θ = π, and an attempt to avoid this 
singularity may lead to significant errors in calculating 
the BSPM. The method described in Ref. 7 for 
calculating the BSPM of round plates is free of this 
disadvantage, but its applicability is limited  (a >> L, 
0° < β < 5°), because it does not take into account the 
internal interactions with plane tetragonal sides, which 
make the principal contribution to the backscattering at 
slant orientation of crystals (β ≠ 0, π/2). The 
aforementioned singularity (dividing by zero) is 
removed in the beam splitting method proposed in this 
paper by means of calculating the limits as it is shown 
in Appendix. 

Appendix 

Let the cross section of a polyhedron-shaped beam  
is determined in the coordinate system Oxyz related to 
the incident radiation by the coordinates xi, yi, zi 
(i = 1, np), ep is the unit vector determining the 
direction of propagation of the beam outgoing from the 
crystal, er is the unit vector determining the direction 
of scattering, n0 is the number of vertices of the 
polyhedron. Then the contribution of the beam to the 
resulting amplitude matrix Ap in the Fraunhofer 
diffraction approximation can be written in the form5: 

Ap(er) = k2/(4π) (1 + er ⋅ ep) Sp qp exp (ikδp), (4) 

where Sp  is the amplitude matrix (transformation of 
the amplitudes when reflecting and refracting on the 
sides) of the ray passing through a polyhedron vertex 
lying on the side from which the beam goes out, δ0 is 
the phase increment of this ray,5 and a0 is the wave 
disturbance in the far zone produced by the outgoing 
beam calculated in the Fraunhofer diffraction 
approximation: 

 qp = ⌡⌠
 Gp

     ⌡⌠ exp ($ ik er ⋅ r′) d
2
r′, (5) 

where k = 2π/λ is the wave number, λ is the radiation 
wavelength, Gp is the beam cross section, r′ is the 
radius vector of a point in the beam cross section. As 
any polyhedron can be represented by a sum of 
triangles with respect to certain internal point O', one 
can rewrite Eq. (5) in the form 

 qp = ∑
j=1

np

 qj
p = ∑

j=1

np

 ⌡⌠

 G
j
p

     ⌡⌠ exp ($ ik er ⋅ r′) d
2
r′. (6) 

To make the integration in Eq. (6) easier, it is 
convenient to pass from the coordinate system Oxyz to 
the coordinate system O'x'y'z' related to the outgoing 
beam, whose axis O'z' coincides with ep, and the point 
O' lies in the plane of the beam cross section  inside the 
polyhedron. Let we have in this coordinate system that 

er = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞ex′

ey′
ez′

 then 

 q
j
p =⌡⌠

 G
j
p

     ⌡⌠ exp ($ ik (ex′ x′ + ey′ y′)) dx′ dy′, (7) 

where G
j
p is the triangle with the vertices (0, 0), (x′j, y′j), 

and (x′j+1, y′j+1), as it is shown in Fig. 8. To calculate 
Eq. (7), it is necessary to make one more transformation 
from the coordinate system O'x'y'z' to the coordinate 
system O'uvz', i.e., the rotation around the axis O'z' by 
the angle φj so that the axis O'u passes through the point 

(x′j, y′j). Numbering of the polyhedron vertices is done 
along the direction of positive angles in the coordinate 
system O'x'y'z'. Let us denote the coordinates of two 

vertices of the triangle (x′j, y′j) and (x′j+1, y′j+1) as 
(u2, 0) and (u1, v1), respectively (see Fig. 8), then we 
have 

 u2 = x′
2
j  + y′2j , sinφj = y′j/u2, cosφj = x′j/u2, 

 u1 = x′j+1 cosφj + y′j+1 sinφj, v1 = $ x′j+1 sinφj + y′j+1 cosφj; 

 eu = ex′ cosφj + ey′ sinφj,  ev = $ ex′ sinφj + ey′ cosφj. 

Hence, Eq. (7) can be written in the form 

 q w u w vp
j

u

v

u
u

= +∫ ∫
0

1 2

0

1

1

1

exp( ) du dv + 

 w u w v

u

u

u u v

u u

+ +∫ ∫

−

−

⋅

1 2

01

2

2 1

2 1

exp( )

( )

 du dv , (8) 

where w1 = $ ikeu, w2 = $ ikev. 
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Fig. 8. Transformation of the coordinates for calculating the 
contribution from a triangle-shaped beam to the far zone field. 

 

Integrating Eq. (8), we obtain 

 q
j
p = v1u2 [w1u1 + w2v1 $ w1u2 $ (w1u1 + w2v1) × 

 × exp (w1u2) + w1u2 exp (w1u1 + w2v1)]/ 

 /[w1u2 (w1u1 + w2v1) (w1u1 + w2v1 $ w1u2)]. 

Denoting s= w1 u1 + w2 v1, and d = w1 u2, we 
finally obtain 
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 q w u
s d s e d e

s d s d
p
j

d s

=

− − +

−
1 2

( )
. (9) 

To develop an algorithm for Eq. (9), it is 
necessary to remove the singularity of dividing by zero. 
There are four types of the singularity: 

1) s = 0, d ≠ 0; 
s

d s ds d s e d e

sd s d

e d

d→

− − +

−

=

− −

0
2

1
lim

( )
, 

2) d = 0, s ≠ 0; 
d

d s ss d s e d e

sd s d

e s

s→

− − +

−

=

− −

0
2

1
lim

( )
, 

3) s = d ≠ 0; 
s d

d s d ds d s e d e

sd s d

de e

d→

− − +

−

=

− +

lim
( )

1

2
, 

4) s = d = 0; 
d

d dde e

d→

− +

=

0
2

1 1

2
lim . 

The aforementioned procedure is given for an 
arbitrary jth triangle from a polyhedron. Applying it to 
all triangles of the polyhedron and summing up their 
contributions, we obtain the contribution coming from 
the entire beam. 
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