Том 34, номер 07, статья № 6

Баженов О. Е. Озоновая аномалия зимой-весной 2019–2020 гг. в Арктике и над севером Евразии по данным спутниковых (Aura MLS/OMI) наблюдений. // Оптика атмосферы и океана. 2021. Т. 34. № 07. С. 524–529. DOI: 10.15372/AOO20210706.
Скопировать ссылку в буфер обмена

Аннотация:

Зимой-весной 2019–2020 гг. наблюдалась самая значительная озоновая аномалия в Арктике за всю историю наблюдений. Она была обусловлена необычайно сильным и продолжительным полярным вихрем, повлекшим беспрецедентное химическое разрушение озона. Анализ данных Aura OMI/MLS показал, что общее содержание озона неуклонно сокращалось и составило 230 е.Д. 18 марта в пункте Алерт, 222 е.Д. 18 марта в Эврике, 229 е.Д. 20 марта в Туле и 226 е.Д. 18 марта в Резольют. Минимальная температура была на 9–10% ниже нормы с декабря по апрель в стратосфере над Томском и Арктикой. Концентрация озона уменьшалась до 4 и 6% от многолетней средней на высоте 20 км 27 марта в пункте Эврика и на высоте 19 км 16 апреля в пункте Ню-Олесунн соответственно. Такое явление вписывается в контекст климатических изменений, ведущих к охлаждению стратосферы. До тех пор, пока уровень озоноразрушающих веществ в стратосфере Арктики не снизится до значений, ожидаемых от реализации Монреальского протокола, будет сохраняться опасность повторения подобных явлений в будущем. Исключительная изоляция вихря в 2020 г. значительно уменьшила его влияние на средние широты.

Ключевые слова:

общее содержание озона, концентрация озона, озоновая аномалия, спутник Aura

Список литературы:

1. Jonsson A.I., De Grandpre J., Fomichev V.I., McConnell J.C., Beagley S.R. Doubled CO2-induced cooling in the middle atmosphere: photochemical analysis of the ozone radiative feedback // J. Geophys. Res. 2004. V. 109. N D24103. DOI: 10.1029/2004JD005093.
2. Pyle J., Shepherd T.G., Bodeker G., Canziani P., Dameris M., Forster P., Gruzdev A., Müller R., Muthama N.J., Pitari G., Randel W. Ozone and climate: A review of interconnections. Chapter 1. Safeguarding the ozone layer and the Global Climate System. IPCC/TEAP Special Report. Cambridge University Press. 2005. P. 83–132.
3. Hu D., Guan Z., Tian W., Ren R. Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific // Nat. Com. 2018. V. 9. P. 1697. DOI: 10.1038/s41467-018-04138-3.
4. Wohltmann I., von der Gathen P., Lehmann R., Maturilli M., Deckelmann H., Manney G.L., Davies D., Tarasik D., Jepsen N., Kivi R., Lyall N., Rex M. Near complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020 // Geophys. Res. Lett. 2020. V. 47. P. e2020GL089547. DOI: 10.1029/2020GL089547.
5. Kuttippurath J., Feng W., Müller R., Kumar P., Raj S., Gopikrishnan G.P., Roy R. Arctic on the verge of an ozone hole? // Atmos. Chem. Phys. Discuss. [Preprint]. DOI: 10.5194/acp-2020-1313, in review, 2021.
6. Lawrence Z.D., Perlwitz J., Butler A.H., Manney G.L., Newman P.A., Lee S.H., Nash E.R. The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking arctic oscillation and ozone loss // J. Geophys. Res. Atmos. 2020. V. 125, N 22. P. e2020JD033271. DOI: 10.1029/2020JD033271.
7. Dameris M., Loyola D.G., Nützel M., Coldewey-Egbers M., Lerot C., Romahn F., van Roozendael M. Record low ozone values over the Arctic in boreal spring 2020 // Atmos. Chem. Phys. 2021. V. 21. P. 617–633. DOI: 10.5194/acp-21-617-2021.
8. Inness A., Chabrillat S., Flemming J., Huijnen V., Langenrock B., Nicolas J., Polichtchouk I., Razinger M. Exceptionally low Arctic stratospheric ozone in spring 2020 as seen in the CAMS reanalysis // J. Geophys. Res. Atmos. 2020. V. 125. N 23. P. e2020JD033563. DOI: 10.1029/2020JD033563.
9. Rao J., Garfinkel C.I. Arctic ozone loss in March 2020 and its seasonal prediction in CFSv2: A comparative study with the 1997 and 2011 cases // J. Geophys. Res.: Atmos. 2020. V. 125, iss. 21. P. e2020JD033524. DOI: 10.1029/2020JD033524.
10. Баженов О.Е., Невзоров А.А., Невзоров А.В., Долгий С.И., Макеев А.П. Возмущение стратосферы над Томском зимой 2017/2018 гг. по данным лидарных и спутниковых (Aura MLS/OMI) наблюдений // Оптика атмосф. и океана. 2020. Т. 33, № 7. С. 509–515; Bazhenov O.E., Nevzorov A.A., Nevzorov A.V., Dolgii S.I., Makeev A.P. Disturbance of the stratosphere over Tomsk during winter 2017/2018 using lidar and Aura MLS/OMI observations // Atmos. Ocean. Opt. 2020. V. 33, N 6. P. 622–628. DOI: 10.15372/AOO20200702.
11. Feng W., Dhomse S., Arosio C., Weber M., Burrows J.P., Santee M.L., Chipperfield M.P. Arctic ozone depletion in 2019/20: Roles of chemistry, dynamics and the montreal protocol GRL // Geophys. Res. Lett. 2021. V. 48, N 48. P. e2020GL091911. DOI: 10.1029/2020GL091911.
12. Manney G.L., Livesey N.J., Santee M.L., Froidevaux L., Lambert A., Lawrence Z.D., Millán L.F., Neu J.L., Read W.G., Schwartz M.J., Fuller R.A. Record low Arctic stratospheric ozone in 2020: MLS observations of chemical processes and comparisons with previous extreme winters // Geophys. Res. Lett. 2020. V. 47. P. e2020GL089063. DOI: 10.1029/2020GL089063.
13. Wilka C., Solomon S., Kinnison D., Tarasick D. An arctic ozone hole in 2020 if not for the Montreal Protocol // Atmos. Chem. Phys. Discuss. [Preprint]. DOI: 10.5194/acp-2020-1297, in review, 2021.