Том 38, номер 03, статья № 8

Антохин П. Н., Пененко А. В., Аршинов М. Ю., Белан Б. Д., Гочаков А. В. Коррекция мощности модельных выбросов антропогенных источников атмосферного загрязнения на основе данных измерений и сопряженных задач. // Оптика атмосферы и океана. 2025. Т. 38. № 03. С. 214–221. DOI: 10.15372/AOO20250308.
Скопировать ссылку в буфер обмена

Аннотация:

Прогнозирование уровня загрязнения воздуха газовыми и аэрозольными компонентами в городах приобретает все большую значимость из-за их серьезного негативного воздействия на здоровье населения и растущих экологических рисков. Представлен подход к оценке и коррекции мощности выбросов антропогенных источников загрязнения атмосферы на основе прямого и обратного моделирования. В качестве инструмента прямого моделирования использовалась модель WRF-Chem, а обратного – разрабатываемая авторами система IMDAF. Результаты прямого моделирования обеспечили данные о метеорологических полях и распределении примесей, необходимые для решения сопряженных задач. Метод сопряженных задач позволил вычислить корректирующий коэффициент, определяющий, насколько необходимо изменить мощность источников, попавших в зону чувствительности, для достижения наилучшего согласия с измерениями. Предложенный подход может быть использован для улучшения прогноза качества воздуха, уточнения инвентаризаций антропогенных выбросов и разработки стратегий снижения экологических рисков в глобальном и региональном масштабах.

Ключевые слова:

численное моделирование, обратное моделирование, сопряженная задача, источники выбросов

Иллюстрации:

Список литературы:

1. Adams K., Greenbaum D.S., Shaikh R., van Erp A.M., Russell A.G. Particulate matter components, sources, and health: Systematic approaches to testing effects // J. Air Waste Manag. Ass. 2015. V. 65. P. 544–558. DOI: 10.1080/10962247.2014.1001884.
2. Mahura A., Baklanov A., Makkonen R., Boy M., Petäjä T., Lappalainen H.K., Nuterman R., Kerminen V.-M., Arnold S.R., Jochum M., Shvidenko A., Esau I., Sofiev M., Stohl A., Aalto T., Bai J., Chen C., Cheng Y., Drofa O., Huang M., Järvi L., Kokkola H., Kouznetsov R., Li T., Malguzzi P., Monks S., Poulsen M.B., Noe S.M., Palamarchuk Y., Foreback B., Clusius P., Soya A., She J., Sørensen J.H., Spracklen D., Su H., Tonttila J., Wang S., Wang J., Wolf-Grosse T., Yu Y., Zhang Q., Zhang W., Zhang W., Zheng X., Li S., Li Y., Zhou P., Kulmala M. Towards seamless environmental prediction – development of Pan-Eurasian EXperiment (PEEX) modelling platform // Big Earth Data. 2024. V. 8. P. 189–230. DOI: 10.5194/gmd-11-4603-2018.
3. Grell G.A., Peckham S.E., Schmitz R., McKeen S.A., Frost G., Skamarock W.C., Eder B. Fully coupled “online” chemistry within the WRF model // Atmos. Environ. 2005. V. 39. P. 6957–6975. DOI: 10.1016/j.atmosenv.2005.04.027.
4. Crippa M., Guizzardi D., Pagani F., Schiavina M., Melchiorri M., Pisoni E., Graziosi F., Muntean M., Maes J., Dijkstra L., Damme M.V., Clarisse L., Coheur P. Insights into the spatial distribution of global, national, and subnational greenhouse gas emissions in the Emissions Database for Global Atmospheric Research (EDGAR v8.0) // Earth Syst. Sci. Data. 2024. V. 16. P. 2811–2830. DOI: 10.5194/essd-16-2811-2024.
5. Kuenen J.J.P., Visschedijk A.J.H., Jozwicka M., Denier van der Gon H.A.C. TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling // Atmos. Chem. Phys. 2014. V. 14. P. 10963–10976. DOI: 10.5194/acp-14-10963-2014.
6. Шалыгина И.Ю., Кузнецова И.Н., Нахаев М.И., Борисов Д.В., Лезина Е.А. Эффективность коррекции эмиссий для расчетов химической транспортной модели CHIMERE в Московском регионе // Оптика атмосф. и океана. 2020. Т. 33, № 6. С. 441–447. DOI: 10.15372/AOO20200604.
7. Liu L., Liu H., Geng G., Hong C., Liu F., Song Y., Tong D., Zheng B., Cui H., Man H., Zhang Q., He K. Anthropogenic emission inventories in China: A review // Nat. Sci. Rev. 2017. V. 4. P. 834–866. DOI: 10.1093/nsr/nwx150.
8. Cheng X., Hao Z., Zang Z., Liu Z., Xu X., Wang S., Liu Y., Hu Y., Ma X. A new inverse modeling approach for emission sources based on the DDM-3D and 3DVAR techniques: An application to air quality forecasts in the Beijing–Tianjin–Hebei region // Atmos. Chem. Phys. 2021. V. 21. P. 13747–13761. DOI: 10.5194/acp-21-13747-2021.
9. Enting I.G. Inverse Problems in Atmospheric Constituent Transport. Cambridge University Press, 2002. 392 p. DOI: 10.1017/CBO9780511535741.
10. Sportisse B. A review of current issues in air pollution modeling and simulation // Comput. Geosci. 2007. V. 11. P. 159–181. DOI: 10.1007/s10596-006-9036-4.
11. Martin R.V. Global inventory of nitrogen oxide emissions constrained by space-based observations of NO2 columns // J. Geophys. Res. 2003. V. 108. DOI: 10.1029/2003jd003453.
12. Wang Y., Chen X., Martin R.V., Streets D.G., Zhang Q., Fu T.-M. Seasonal variability of NOx emissions over east China constrained by satellite observations: Implications for combustion and microbial sources // J. Geophys. Res. 2007. V. 112. DOI: 10.1029/2006jd007538.
13. Yang Q., Wang Y.H., Zhao C., Liu Z., William I., Gustafson J., Shao M. NOx emission reduction and its effects on ozone during the 2008 Olympic Games // Environ. Sci. Technol. 2011. V. 45. P. 6404–6410. DOI: 10.1021/es200675v.
14. Manning A.J., O’Doherty S., Jones A.R., Simmonds P.G., Derwent R.G. Estimating UK methane and nitrous oxide emissions from 1990 to 2007 using an inversion modeling approach // J. Geophys. Res. 2011. V. 116. DOI: 10.1029/2010jd014763.
15. Li F., Hu F., Zhu J. Solving the optimal layout problem of multiple industrial pollution sources using the adjoint method // Sci. China: Earth Sci. 2005. V. 35. P. 64–71.
16. Koohkan M.R., Bocquet M., Roustan Y., Kim Y., Seigneur C. Estimation of volatile organic compound emissions for Europe using data assimilation // Atmos. Chem. Phys. 2013. V. 13. P. 5887–5905. DOI: 10.5194/acp-13-5887-2013.
17. Zhang L., Shao J., Lu X., Zhao Y., Hu Y., Henze D.K., Liao H., Gong S., Zhang Q. Sources and processes affecting fine particulate matter pollution over North China: An adjoint analysis of the Beijing APEC period // Sci. Technol. 2016. V. 50. P. 8731–8740. DOI: 10.1021/acs.est.6b03010.
18. Wang C., An X., Zhai S., Hou Q., Sun Z. Tracking sensitive source areas of different weather pollution types using GRAPES-CUACE adjoint model // Atmos. Environ. 2018. V. 175. P. 154–166. DOI: 10.1016/j.atmosenv.2017.11.041.
19. Penenko A. Convergence analysis of the adjoint ensemble method in inverse source problems for advection-diffusion-reaction models with image-type measurements // Inverse Prob. Imaging. 2020. V. 14. P. 757–782. DOI: 10.3934/ipi.2020035.
20. Gochakov A.V., Penenko A.V., Antokhin P.N., Kolker A.B. Air pollution modelling in urban environment based on a priori and reconstructed data // IOP Conf. Ser.: Earth Environ. Sci. 2018. V. 211. P. 12050. DOI: 10.1088/1755-1315/211/1/012050.
21. Kopacz M., Jacob D.J., Henze D.K., Heald C.L., Streets D.G., Zhang Q. Comparison of adjoint and analytical Bayesian inversion methods for constraining Asian sources of carbon monoxide using satellite (MOPITT) measurements of CO columns // J. Geophys. Res. 2009. V. 114. DOI: 10.1029/2007jd009264.
22. Lucas D.D., Simpson M., Cameron-Smith P., Baskett R.L. Bayesian inverse modeling of the atmospheric transport and emissions of a controlled tracer release from a nuclear power plant // Atmos. Chem. Phys. 2017. V. 17. P. 13521–13543. DOI: 10.5194/acp-17-13521-2017.
23. Bocquet M., Elbern H., Eskes H., Hirtl M., Žabkar R., Carmichael G.R., Flemming J., Inness A., Pagowski M., Pérez Camaño J.L., Saide P.E., San Jose R., Sofiev M., Vira J., Baklanov A., Carnevale C., Grell G., Seigneur C. Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models // Atmos. Chem. Phys. 2015. V. 15. P. 5325–5358. DOI: 10.5194/acp-15-5325-2015.
24. Chen D., Liu Z., Ban J., Chen M. The 2015 and 2016 wintertime air pollution in China: SO2; emission changes derived from a WRF-Chem/EnKF coupled data assimilation system // Atmos. Chem. Phys. 2019. V. 19. P. 8619–8650. DOI: 10.5194/acp-19-8619-2019.
25. Dai T., Cheng Y., Goto D., Li Y., Tang X., Shi G., Nakajima T. Revealing the sulfur dioxide emission reductions in China by assimilating surface observations in WRF-Chem // Atmos. Chem. Phys. 2021. V. 21. P. 4357–4379. DOI: 10.5194/acp-21-4357-2021.
26. Elbern H., Strunk A., Schmidt H., Talagrand O. Emission rate and chemical state estimation by 4-dimensional variational inversion // Atmos. Chem. Phys. 2007. V. 7. P. 3749–3769. DOI: 10.5194/acp-7-3749-2007.
27. Niwa Y., Tomita H., Satoh M., Imasu R., Sawa Y., Tsuboi K., Matsueda H., Machida T., Sasakawa M., Belan B., Saigusa N. A 4D-Var inversion system based on the icosahedral grid model (NICAM-TM 4D-Var v1.0). Part 1: Offline forward and adjoint transport models // Geosci. Model Develop. 2017. V. 10. P. 1157–1174. DOI: 10.5194/gmd-10-1157-2017.
28. Voshtani S., Ménard R., Walker T.W., Hakami A. Use of assimilation analysis in 4D-Var source inversion: Observing System Simulation Experiments (OSSEs) with GOSAT methane and hemispheric CMAQ // Atmosphere. 2023. V. 14. P. 758. DOI: 10.3390/atmos14040758.
29. Hu Y., Odman M.T., Russell A. G. Top-down analysis of the elemental carbon emissions inventory in the United States by inverse modeling using Community Multiscale Air Quality model with Decoupled Direct Method (CMAQ-DDM) // J. Geophys. Res. 2009. V. 114. DOI: 10.1029/2009jd011987.
30. Марчук Г.И. Математическое моделирование в проблеме окружающей среды. М.: Наука, 1982. 351 с.
31. NCEP FNL Operational Model Global Tropospheric Analyses, continuing from July 1999. DOI: 10.5065/ D6M043C6 (last access: 12.05.2024).