Том 37, номер 11, статья № 2

Лаврентьев Н. А., Родимова О. Б., Фазлиев А. З. Систематизация опубликованной научной графики, представляющей характеристики континуального поглощения углекислого газа: публикации 1991–2000 гг.. // Оптика атмосферы и океана. 2024. Т. 37. № 11. С. 905–917. DOI: 10.15372/AOO20241102.
Скопировать ссылку в буфер обмена

Аннотация:

Описана часть графиков коллекции «Континуальное поглощение молекулы диоксида углерода» информационной системы GrafOnto, извлеченных из публикаций 1991–2000 гг. Представлены термодинамические условия, при которых проведены измерения и расчеты, указаны физические величины и их размерности, а также исследованные спектральные и температурные интервалы. Кратко описан прогресс в решении задач континуального поглощения за указанный промежуток времени. Представлено расширение функциональности системы GrafOnto, связанное с детализацией структуры коллекции информационных ресурсов, содержащей множества (кластеры) примитивных графиков, относящихся к окнам прозрачности. В кластере, в свою очередь, выделяются семейства ближайших графиков с определенными свойствами. Выделение семейств позволяет использовать в анализе не только отдельные графики, но и их наборы, состав которых определяется спектральными или температурными величинами. В свойствах (метаданных) примитивных графиков добавилось семейство ближайших графиков. Созданная система научной графики GrafOnto предназначена для специалистов, занимающихся проблемами поглощения атмосферных газов.

Ключевые слова:

информационная система GrafOnto, графические ресурсы по континуальному поглощению диоксида углерода, количественная оценка близости графиков, семейства ближайших примитивных графиков

Список литературы:

1. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.-M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canèw E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.-M., Horneman V.-M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Yu., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectros. Radiat. Transfer. 2022. V. 277. P. 107949. DOI: 10.1016/j.jqsrt.2021.107949.
2. Albert D., Antony B.K., Awa Ba Y., Babikov Y.L., Bollard P., Boudon V., Delahaye F., Del Zanna G., Dimitrijevíc M.S., Drouin B.J., Dubernet M.-L., Duensing F., Emoto M., Endres C.P., Fazliev A.Z., Glorian J.-M., Gordon I.E., Gratier P., Hil C., Jevremovíc D., Joblin C., Kwon D.-H., Kochanov R.V., Krishnakumar E., Leto G., Loboda P.A., Lukashevskaya A.A., Lyulin O.M., Marinkovíc B.P., Markwick A., Marquart T., Mason N.J., Mendoza C., Millar T.J., Moreau N., Morozov S.V., Möller T., Müller H.S.P., Mulas G., Murakami I., Pakhomov Y., Palmeri P., Penguen J., Perevalov V.I., Piskunov N., Postler J., Privezentsev A.I., Quinet P., Ralchenko Y., Rhee Y.-J., Richard C., Rixon G., Rothman L.S., Roueff E., Ryabchikova T., Sahal-Bréchot S., Scheier P., Schilke P., Schlemmer S., Smith K.W., Schmitt B., Skobelev I.Yu., Sreckovíc V.A., Stempels E., Tashkun S.A., Tennyson J., Tyuterev V.G., Vastel C., Vujcíc V., Wakelam V., Walton N.A., Zeippen C., Zwölf C.M. A decade with VAMDC: Results and ambitions // Atoms. 2020. V. 8, N 4. P. 76. DOI: 10.3390/atoms8040076.
3. Keller-Rudek H., Moortgat G.K., Sander R., Sörensen R. The MPI-Mainz UV/VIS spectral atlas of gaseous molecules of atmospheric interest // Earth Syst. Sci. Data. 2013. V. 5. P. 365–373. DOI: 10.5281/zenodo.6951.
4. Лаврентьев Н.А., Родимова О.Б., Фазлиев А.З. Систематизация опубликованной научной графики, представляющей характеристики континуального поглощения водяного пара. III. Публикации 2001–2020 гг. // Оптика атмосф. и океана 2023. Т. 36, № 7. С. 541–556. DOI: 10.15372/AOO20230703; Lavrentiev N.A., Rodimova O.B., Fazliev A.Z. Systematization of published scientific graphics characterizing the water vapor continuum absorption: III – Publications of 2001–2020 // Atmos. Ocean. Opt. 2023. V. 36, N 6. P. 622–638. DOI: 10.1134/S102485602306012X.
5. Scutaru D., Rosenmann L., Taine J., Wattson R.B., Rothman L.S. Measurements and calculations of CO2 absorption at high temperature in the 4.3 and 2.7 mm regions // J. Quant. Spectros. Radiat. Transfer. 1993. V. 50, N 2. P. 179–191.
6. Ozanne L., Nguyen-Van-Thanh, Brodbeck C., Bouanich J.P., Hartmann J.M., Boulet C. Line mixing and nonlinear density effects in the n3 and 3n3 infrared bands of CO2 perturbed by He up to 1000 bar // J. Chem. Phys. 1995. V. 102, N 19. P. 7306–7316.
7. Hartmann J.M., L’Haridon F. Simple modeling of line-mixing effects in IR bands. I. Linear molecules: Application to CO2 // J. Chem. Phys. 1995. V. 103, N 15. P. 6467–6478.
8. Boissoles J., Thibault F., Boulet C. Line mixing effects in the 15 mm Q-branches of CO2 in helium: Theoretical analysis // J. Quant. Spectros. Radiat. Transfer. 1996. V. 56, N 6. P. 835–853.
9. Brodbeck C., Vanthanh N., Bouanich J.P., Boulet C., Jeanlouis A., Bezard B., De Berch C. Measurements of pure CO2 absorption at high-densities near 2.3-mm // J. Geophys. Res. 1991. V. 96, N E2. P. 17497–17500. DOI: 10.1029/91je01680.
10. Hartmann J.M., Boulet C. Line mixing and finite duration of collision effects in pure CO2 infrared-spectra – fitting and scaling analysis // J. Chem. Phys. 1991. V. 94, N 10. P. 6406–6419. DOI: 10.1063/1.460270.
11. Menoux V., Le Doucen R., Boissoles J., Boulet C. Line-shape in the low-frequensy wing of self-broadened and N2-broadened n3 CO2 lines – temperature-dependence of the asymmetry // Appl. Opt. 1991. V. 30, N 3. P. 281–286. DOI: 10.1364/AO.30.000281.
12. Roney P.L., Reid F., Theriault J.M. Transmission window near 2400 cm-1 – an experimental and modeling study // Appl. Opt. 1991. V. 30, N 15. P. 1995–2004. DOI: 10.1364/ao.30.001995.
13. Несмелова Л.И., Родимова О.Б., Творогов С.Д. О поведении коэффициента поглощения при изменении давления в крыле полосы 4,3 мкм СО2 // Оптика атмосф. 1991. T. 4, № 7. C. 745–752.
14. Parker R.A., Esplin M.P., Wattson R.B., Hoke M.L., Rothman L.S., Blumberg W.A.M. High temperature absorption measurements and modeling of CO2 for the 12 micron window region // J. Quant. Spectros. Radiat. Transfer. 1992. V. 48, N 5–6. P. 591–597. DOI: 10.1016/0022-4073(92)90123-L.
15. Nesmelova L.I., Rodimova O.B., Tvorogov S.D. On the role of continual and selective absorption in the wing of the 4.3 mm CO2 band at high pressures and temperatures // Proc. SPIE 1992. V. 1811. P. 291–294.
16. Несмелова Л.И., Родимова О.Б., Творогов С.Д. Спектральное поведение коэффициента поглощения в полосе 4,3 мкм СО2 в широком диапазоне температур и давлений // Оптика атмосф. и океана. 1992. T. 5, № 9. C. 939–946.
17. Filippov N.N., Tonkov M.V. Semiclassical analysis of line mixing in the infrared bands of CO and CO2 // J. Quant. Spectros. Radiat. Transfer. 1993. V. 50, N 1. P. 111–125.
18. Pollack J.B., Dalton J.B., Grinspoon D., Wattson R.B., Freedman R., Crisp D., Allen D.A., Bezard B., DeBerogh C., Giver L.P., Ma Q., Tipping R. Near-infrared light from Venus’ nightside: A spectroscopic analysis // Icarus. 1993. V. 103. P. 1–42.
19. Tsuboi T., Arimitsu N., Hartmann J.M. High temperature absorption by pure CO2 far line wings in the 4 mm region // Japan J. Appl. Phys. 1993. V. 32. N 12A. Р. L1778–780.
20. Ma Q., Tipping R.H. An improved quasistatic line-shape theory: The effects of molecular motion on the line wings // J. Chem. Phys. 1994. V. 100, N 8. P. 5567–5579.
21. Ma Q., Tipping R.H. Extension of the quasistatic far-wing line shape theory to multicomponent anisotropic potentials // J. Chem. Phys. 1994. V. 100, N 12. P. 8720–8736.
22. Boissoles J., Le Doucen R., Thibault F., Boulet C. The 3n3 band of CO2-influence of the pressurized perturber gas // J. Quant. Spectros. Radiat. Transfer. 1994. V. 52, N 3/4. P. 361–366.
23. Boissoles J., Thibault F., Le Doucen R., Menoux V., Boulet C. Line mixing effects in the 0003–0000 band of CO2 in helium. III. Energy corrected sudden simultaneous fit of line widths and near wing profile // J. Chem. Phys. 1994. V. 101, N 8. P. 6552–6558.
24. Boissoles J., Thibault F., Le Doucen R., Menoux V., Boulet C. Line mixing effects in the 0003–0000 band of CO2 in helium. II. Theoretical analysis // J. Chem. Phys. 1994. V. 100, N 1. P. 215–223.
25. Thibault F., Boissoles J., Le Doucen R., Menoux V., Boulet C. Line mixing effects in the 0003–0000 band of CO2 in helium. I. Experiment // J. Chem. Phys. 1994. V. 100, N 1. P. 210–214.
26. Hartmann J.-M., Boulet C., Margottin-Maclou M., Rachet F., Khalil B., Thibault F., Boissoles J. Simple modelling of Q-branch absorption – I. Theoretical model and application to CO2 and N2O // J. Quant. Spectros. Radiat. Transfer. 1995. V. 54, N 4. P. 705–722.
27. Творогов С.Д. Проблема периферии контура спектральных линий в атмосферной оптике // Оптика атмосф. и океана. 1995. T. 8, № 1–2. C. 18–30.
28. Meadows V.S., Crisp D. Ground-based near-infrared observations of the Venus nightside: The thermal structure and water abundance near the surface // J. Grophys. Res. 1996. V. 101, N E2. P. 4595–4622.
29. Tonkov M.V., Boissoles J., Le Doucen R., Khalil B., Thibault F. Q-branch shapes of CO2 spectrum in 15 mm region: Experiment // J. Quant. Spectros. Radiat. Transfer. 1996. V. 55, N 3. P. 321–334.
30. Tonkov M.V., Filippov N.N., Bertsev V.V., Bouanich J.P., Van-Thanh N., Brodbeck C., Hartmann J.M., Boulet C., Thibault F., Le Doucen R. Measurements and empirical modeling of pure CO2 absorption in the 2.3-mm region at room temperature: Far wings, allowed and collision-induced bands // Appl. Opt. 1996. V. 35, N 24. P. 4863–4870.
31. Filippov N.N., Bouanich J.-P., Hartmann J.-M., Ozanne L., Boulet C., Tonkov M.V., Thibault F., Le Doucen R. Line-mixing effects in the 3n3 band of CO2 perturbed by Ar // J. Quant. Spectros. Radiat. Transfer. 1996. V. 55, N 3. P. 307–320.
32. Khalil B., Cisse O., Moreau G., Thibault F., Le Doucen R., Boissoles J. Line mixing and line broadening in CO2 bands perturbed by helium at 193 K // Chem. Phys. Lett. 1996. V. 263, N 6. P. 811–816.
33. Tonkov M.V., Filippov N.N., Timofeyev Yu.M., Polyakov A.V. A simple model of the line mixing effect for atmospheric applications: Theoretical background and comparison with experimental profiles // J. Quant. Spectros. Radiat. Transfer. 1996. V. 56, N 5. P. 783–795.
34. Ma Q., Tipping R.H., Boulet C. The frequency detuning and bandaverage approximations in a farwing line shape theory satisfying detailed balance // J. Chem. Phys. 1996. V. 104, N 24. P. 9678–9688.
35. Filippov N.N., Bouanich J.P., Boulet C., Tonkov M.V., LeDoucen R., Thibault F. Collision-induced double transition effects in the 3n3 CO2 band wing region // J. Chem. Phys. 1997. V. 106, N 6. P. 2067–2072.
36. Gruszka M., Borysow A. Roto-translational collision-induced absorption of CO2 for the atmosphere of Venus at frequencies from 0 to 250 cm-1, at temperatures from 200 to 800 K // Icarus. 1997. V. 129. P. 172–177.
37. Kochel J.-M., Hartmann J.-M., Camy-Peyret C., Rodriges R., Payan S. Influence of line mixing on absorption by CO2 Q branches in atmospheric balloon-borne spectra near 13 mm // J. Geophys. Res. 1997. V. 102, N D11. P. 12891–12899.
38. Ozanne L., Ma Q., Nguyen-Van-Thanh, Brodbeck C., Bouanich J.P., Hartmann J.-M., Boulet C., Tipping R.H. Line-mixing, finite duration of collision, vibrational shift, and non-linear density effects in the n3 and 3n3 bands of CO2 perturbed by Ar up to 1000 bar // J. Quant. Spectros. Radiat. Transfer. 1997. V. 58, N 2. P. 261–277.
38. Ma Q., Tipping R.H. The distribution of density matrices over potential-energy surfaces: Application to the calculation of the far-wing line shapes for CO2 // J. Chem. Phys. 1998. V. 108, N 9. P. 3386–3399. DOI: 10.1117/12.724923.
40. Поляков А.В., Тимофеев Ю.М., Тонков М.В., Филиппов Н.Н. Влияние интерференции спектральных линий на функции пропускания атмосферы в полосах поглощения СО2 // Изв. АН. Физ. атмосф. и океана. 1998. T. 34, № 3. C. 357–367.
41. Rodrigues R., Boulet C., Bonamy L., Hartmann J.-M. Temperature, pressure and perturber denpendencies of line-mixing effects in CO2 infrared spectra. II. Rotational angular momentum relaxation and spectral shift in å  å bands // J. Chem. Phys. 1998. V. 109, N 8. P. 3037–3047. DOI: 10.1063/1.476921.
42. Ma Q. Tipping R.H., Boulet C., Bouanich J.P. Theoretical far-wing line shape and absorption for high temperature CO2 // Appl. Opt. 1999. V. 38, N 3. P. 599–604. DOI: 10.1364/ao.38.000599.
43. Bulanin M.O., Dokuchaev A.B., Tonkov M.V., Filipov N.N. Influence of the line interference on the vibratio-rotation band shapes // J. Quant. Spectros. Radiat. Transfer. 1984. V. 31, N 6. P. 521–543.
44. Boissoles J., Boulet C., Robert D., Green S. IOS and ECS line coupling calculation for the CO–He system: Influence on the vibration-rotation band shapes // J. Chem. Phys. 1987. V. 87, N 6. P. 3436–3446.
45. Boulet C., Boissoles J., Robert D. Collisionally induced population transfer effect in infrared absorption spectra. I. A line-by-line coupling theory from resonances to the far wings // J. Chem. Phys. 1988. V. 89, N 2. P. 625–634.
46. Strow L.L., Reuter D. Effect of line mixing on atmospheric brightness temperature near 15 mm // Appl. Opt. 1988. V. 27, N 5. P. 872–878.
47. Fano U. Pressure broadening as a prototype of relaxation // Phys. Rev. 1963. V. 131, N 1. P. 259–268.
48. Tvorogov S.D., Rodimova O.B. Spectral line shape. I. Kinetic equation for arbitrary frequency detunings // J. Chem. Phys. 1995. V. 102, N 22. P. 8736–8745.
49. Творогов С.Д., Родимова О.Б. Столкновительный контур спектральных линий. Томск: Изд-во ИОА СО РАН, 2013. 196 с.
50. Творогов С.Д., Родимова О.Б., Несмелова Л.И. Спектральный обмен и периферия контура спектральных линий. Критический обзор // Оптика атмосф. 1990. Т. 3, № 5. С. 468–481.
51. Творогов С.Д., Родимова О.Б., Несмелова Л.И. О роли интерференции в далеких крыльях спектральных линий СО2 // Оптика атмосф. и океана. 2003. Т. 16, № 11. С. 964–968.
52. Несмелова Л.И., Родимова О.Б., Творогов С.Д. Контур спектральной линии и межмолекулярное взаимодействие. Новосибирск: Наука, 1986. 216 с.
53. Несмелова Л.И., Родимова О.Б., Творогов С.Д. Спектральное поведение коэффициента поглощения в полосе 4.3 мкм СО2 в широком диапазоне температур и давлений // Оптика атмосф. и океана. 1992. Т. 5, № 9. С. 939–946.
54. Hartmann J.M., Boulet C. Line-mixing and finite duration of collision effects in pure CO2 infrared spectra: Fitting analysis // Proc. ASA Workshop, Tomsk, 1990. P. 10–13.
55. Burch D.E., Gryvnak D.A., Gates F.J. Continuum absorption by H2O between 330 and 825 cm-1, Final Report for Period 16 October 1973 – 30 September 1974, AFCRL-TR-74-0377. Aeronutronic Division, Philco Ford Corporation, 1974.
56. Lavrent'ev N.A., Rodimova O.B., Fazliev A.Z. Systematization of published scientific graphics, representing continuum absorption of carbon dioxide: Publications of 1956–1990 // Proc. SPIE. 2021. V. 19916. P. 1191606. DOI: 10.1117/12.2603246.