Том 36, номер 02, статья № 8

Коновалов И. Б., Головушкин Н. А., Журавлева Т. Б., Насртдинов И. М., Ужегов В. Н., Beekmann M. Применение модельного комплекса CHIMERE-WRF для изучения радиационных воздействий сибирского дымового аэрозоля в Восточной Арктике. // Оптика атмосферы и океана. 2023. Т. 36. № 02. С. 129–139. DOI: 10.15372/AOO20230208.    PDF
Скопировать ссылку в буфер обмена

Аннотация:

Описана вычислительная технология для изучения эффектов аэрозольно-радиационного взаимодействия и получения региональных оценок прямого (ПРЭ) и полупрямого (ППРЭ) радиационных эффектов дымового аэрозоля на основе расчетов c использованием химико-транспортной модели CHIMERE, сопряженной с метеорологической моделью WRF. Предложенная технология применена для численного исследования радиационных воздействий сибирских дымов в Восточной Арктике в период 16–31 июля 2016 г. Результаты модельных расчетов показывают, что в указанное время сибирские дымы в целом оказывали значительное охлаждающее воздействие на атмосферу в Восточной Арктике за счет ПРЭ, величина которого на верхней границе атмосферы составляла в среднем -6,0 Вт × м-2, будучи минимальной над снежно-ледовым покровом океана (-1,2 Вт × м-2). Обнаружено, что вклад ПРЭ сибирского дымового аэрозоля в радиационный баланс арктической атмосферы в определенной мере компенсируется за счет ППРЭ, который в среднем является положительным (2,0 Вт × м-2). ППРЭ формируется при многочасовом воздействии аэрозоля на метеорологические процессы и играет наиболее важную роль над снежно-ледовыми арктическими поверхностями, где он превышает ПРЭ по абсолютной величине. Показано, что формирование ППРЭ сибирских дымов в выполненных численных экспериментах преимущественно обусловлено рассеянием (а не поглощением) излучения аэрозольными частицами.
 

Ключевые слова:

аэрозоль, дым, химико-транспортная модель, аэрозольно-радиационное взаимодействие

Иллюстрации:

Список литературы:

1. Sand M., Berntsen T., von Salzen K., Flanner M., Langner J., Victor D. Response of arctic temperature to changes in emissions of short-lived climate forcers // Nat. Climate Change. 2016. V. 6. P. 286–289.
2. Bellouin N., Boucher O., Haywood J., Shekar Reddy M. Global estimate of aerosol direct radiative forcing from satellite measurements // Nature. 2005. V. 438. P. 1138–1141.
3. Hansen J., Sato M., Reudy R. Radiative forcing and climate response // J. Geophys. Res. 1997. V. 102. P. 6831–6864.
4. Twomey S. The influence of pollution on the shortwave albedo of clouds // J. Atmos. Sci. 1977. V. 34. P. 1149–1152.
5. Hansen J., Nazarenko L. Soot climate forcing via snow and ice albedos // Proc. Natl. Acad. Sci. USA. 2004. V. 101, N 2. P. 423–428.
6. Evangeliou N., Balkanski Y., Hao W.M., Petkov A., Silverstein R.P., Corley R., Nordgren B.L., Urbanski S.P., Eckhardt S., Stohl A., Tunved P., Crepinsek S., Jefferson A., Sharma S., Nøjgaard J.K., Skov H. Wildfires in northern Eurasia affect the budget of black carbon in the Arctic – a 12-year retrospective synopsis (2002–2013) // Atmos. Chem. Phys. 2016. V. 16. P. 7587–7604.
7. Журавлева Т.Б., Насртдинов И.М., Виноградова А.А. Прямые радиационные эффекты дымового аэрозоля в районе ст. Тикси (Российская Арктика): предварительные результаты // Оптика атмосф. и океана. 2019. Т. 32, № 1. С. 29–38; Zhuravleva T.B., Nasrtdinov I.M., Vinogradova A.A. Direct radiative effects of smoke aerosol in the region of Tiksi Station (Russian Arctic): Preliminary results // Atmos. Ocean. Opt. 2019. V. 32. P. 296–305.
8. Lisok J., Rozwadowska A., Pedersen J.G., Markowicz K.M., Ritter C., Kaminski J.W., Struzewska J., Mazzola M., Udisti R., Becagli S., Gorecka I. Radiative impact of an extreme 1. Arctic biomass-burning event // Atmos. Chem. Phys. 2018. V. 18. P. 8829–8848.
9. Zamora L.M., Kahn R.A., Eckhardt S., McComiskey A., Sawamura P., Moore R., Stohl A. Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds // Atmos. Chem. Phys. 2017. V. 17. P. 7311–7332.
10. Tosca M.G., Randerson J.T., Zender C.S. Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation // Atmos. Chem. Phys. 2013. V. 13. P. 5227–5241.
11. Jiang Y., Lu Z., Liu X., Qian Y., Zhang K., Wang Y., Yang X.-Q. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5 // Atmos. Chem. Phys. 2016. V. 16. P. 14805–14824.
12. Sand M., Samset B. H., Balkanski Y., Bauer S., Bellouin N., Berntsen T.K., Bian H., Chin M., Diehl T., Easter R., Ghan S.J., Iversen T., Kirkevåg A., Lamarque J.-F., Lin G., Liu X., Luo G., Myhre G., Noije T.V., Penner J.E., Schulz M., Seland Ø., Skeie R.B., Stier P., Takemura T., Tsigaridis K., Yu F., Zhang K., Zhang H. Aerosols at the poles: An AeroCom Phase II multi-model evaluation // Atmos. Chem. Phys. 2017. V. 17. P. 12197–12218.
13. Wang X., Heald C.L., Liu J., Weber R.J., Campuzano-Jost P., Jimenez J.L., Schwarz J.P., Perring A.E. Exploring the observational constraints on the simulation of brown carbon // Atmos. Chem. Phys. 2018. V. 18. P. 635–653.
14. Hamilton D.S., Hantson S., Scott C.E., Kaplan J.O., Pringle K.J., Nieradzik L.P., Rap A., Folberth G.A., Spracklen D.V., Carslaw K.S. Reassessment of pre-industrial fire emissions strongly affects anthropogenic aerosol forcing // Nat. Commun. 2018. V. 9. P. 3182.
15. Konovalov I.B., Lvova D.A., Beekmann M., Jethva H., Mikhailov E.F., Paris J.-D., Belan B.D., Kozlov V.S., Ciais P., Andreae M.O. Estimation of black carbon emissions from Siberian fires using satellite observations of absorption and extinction optical depths // Atmos. Chem. Phys. 2018. V. 18. P. 14889–14924.
16. Konovalov I.B., Beekmann M., Berezin E.V., Formenti P., Andreae M.O. Probing into the aging dynamics of biomass burning aerosol by using satellite measurements of aerosol optical depth and carbon monoxide // Atmos. Chem. Phys. 2017. V. 17. P. 4513–4537.
17. Konovalov I.B., Golovushkin N.A., Beekmann M., Andreae M.O. Insights into the aging of biomass burning aerosol from satellite observations and 3D atmospheric modeling: Evolution of the aerosol optical properties in Siberian wildfire plumes // Atmos. Chem. Phys. 2021. V. 21, N 1. P. 357–392.
18. Konovalov I.B., Beekmann M., Golovushkin N.A., Andreae M.O. Nonlinear behavior of organic aerosol in biomass burning plumes: a microphysical model analysis // Atmos. Chem. Phys. 2019. V. 19, N 19. P. 12091–12119.
19. Zhuravleva T., Nasrtdinov I., Konovalov I., Golovushkin N., Beekmann M. Impact of the atmospheric photochemical evolution of the organic component of biomass burning aerosol on its radiative forcing efficiency: A box model analysis // Atmosphere. 2021. V. 12. P. 1555.
20. Lindeman J.D., Boybeyi Z., Gultepe I. An examination of the aerosol semi-direct effect for a polluted case of the ISDAC field campaign // J. Geophys. Res. 2011. V. 116. Р. D00T10.
21. Stofferahn E., Boybeyi Z. Investigation of aerosol effects on the Arctic surface temperature during the diurnal cycle: Part 2 – Separating aerosol effects // Int. J. Climatol. 2017. V. 37. P. 775–787.
22. Lu Z., Sokolik I.N. Examining the impact of smoke on frontal clouds and precipitation during the 2002 Yakutsk wildfires using the WRF-Chem-SMOKE model and satellite data // J. Geophys. Res.: Atmos. 2017. V. 122. P. 12765–12785.
23. Péré J.C., Bessagnet B., Mallet M., Waquet F., Chiapello I., Minvielle F., Pont V., Menut L. Direct radiative effect of the Russian wildfires and its impact on air temperature and atmospheric dynamics during August 2010 // Atmos. Chem. Phys. 2014. V. 14. P. 1999–2013.
24. Menut L., Bessagnet B., Khvorostyanov D., Beekmann M., Blond N., Colette A., Coll I., Curci G., Foret G., Hodzic A., Mailler S., Meleux F., Monge J.-L., Pison I., Siour G., Turquety S., Valari M., Vautard R., Vivanco M.G. CHIMERE 2013: A model for regional atmospheric composition modeling // Geosci. Model Dev. 2013. V. 6. P. 981–1028.
25. Tuccella P., Menut L., Briant R., Deroubaix A., Khvorostyanov D., Mailler S., Siour G., Turquety S. Implementation of aerosol-cloud interaction within WRF-CHIMERE online coupled model: Evaluation and investigation of the indirect radiative effect from anthropogenic emission reduction on the Benelux union // Atmosphere. 2019. V. 10. P. 20.
26. Briant R., Tuccella P., Deroubaix A., Khvorostyanov D., Menut L., Mailler S., Turquety S. Aerosol–radiation interaction modelling using online coupling between the WRF 3.7.1 meteorological model and the CHIMERE 2016 chemistry-transport model, through the OASIS3-MCT coupler // Geosci. Model Dev. 2017. V. 10. Р. 927–944. DOI: 10.5194/gmd-10-927-2017.
27. Menut L., Bessagnet B., Briant R., Cholakian A., Couvidat F., Mailler S., Pennel R., Siour G., Tuccella P., Turquety S., Valari M. The CHIMERE v2020r1 online chemistry-transport model // Geosci. Model Dev. 2021. V. 14. P. 6781–6811.
28. Miguez-Macho G., Stenchikov G.L., Robock A. Spectral nudging to eliminate the effects of domain position and geometry in regional climate model simulations // J. Geophys. Res. Atmos. 2004. V. 109. N D13104. P. 1–14.
29. Горчаков Г.И., Голицын Г.С., Ситнов С.А., Карпов А.В., Горчакова И.А., Гущин Р.А., Даценко О.И. Крупномасштабные дымки Евразии в июле 2016 г. // Докл. РАН. 2018. Т. 482, № 2. С. 209–212.
30. Bessagnet B., Menut L., Curci G., Hodzic A., Guillaume B., Liousse C., Moukhtar S., Pun B., Seigneur C., Schulz M. Regional modeling of carbonaceous aerosols over Europe – Focus on Secondary Organic Aerosols // J. Atmos. Chem. 2009. V. 61. P. 175–202.
31. Levy R.C., Mattoo S., Munchak L.A., Remer L.A., Sayer A.M., Patadia F., Hsu N.C. The collection 6 MODIS aerosol products over land and ocean // Atmos. Meas. Tech. 2013. V. 6. P. 2989–3034.
32. Konovalov I.B., Golovushkin N.A., Beekmann M., Panchenko M.V., Andreae M.O. Inferring the absorption properties of organic aerosol in Siberian biomass burning plumes from remote optical observations // Atmos. Meas. Tech. 2021. V. 14. P. 6647–6673.
33. McClure C.D., Lim C.Y., Hagan D.H., Kroll J.H., Cappa C.D. Biomass-burning-derived particles from a wide variety of fuels – Part 1: Properties of primary particles // Atmos. Chem. Phys. 2021. V. 20. P. 1531–1547.
34. Kozlov V.S., Konovalov I.B., Panchenko M.V., Shmargunov V.P., Yausheva E.P. Dynamics of aerosol absorption characteristics in smoke combustion of forest biomass burning at the large aerosol chamber at the stages of generation and aging in time // Proc. SPIE. 2021. V. 11916. Р. 119164D.
35. Konovalov I.B., Golovushkin N.A., Beekmann M., Turquety S. Using Multi-Platform Satellite Observations to Study the atmospheric evolution of brown carbon in Siberian biomass burning plumes // Remote Sens. 2022. V. 14. P. 2625.
36. CAMS – the Copernicus Atmosphere Monitoring Service team: Global Fire Assimilation System v2.1, Fire Radiative Power, ECMWF. URL: http://apps.ecmwf. int/datasets/data/cams-gfas (last access: 14.05.2022).
37. Kaiser J.W., Heil A., Andreae M.O., Benedetti A., Chubarova N., Jones L., Morcrette J.-J., Razinger M., Schultz M.G., Suttie M., van der Werf G.R. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power // Biogeosci. 2012. V. 9. P. 527–554.
38. Granier C., Darras S., Denier van der Gon H., Doubalova J., Elguindi N., Galle B., Gauss M., Guevara M., Jalkanen J.-P., Kuenen J., Liousse C., Quack B., Simpson D., Sindelarova K. The Copernicus Atmosphere Monitoring Service global and regional emissions (April 2019 version) // Copernicus Atmos. Monitor. Service. 2019. P. 54.
39. Chubarova N., Nezval' Ye., Sviridenkov I., Smirnov A., Slutsker I. Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010 // Atmos. Meas. Tech. 2012. V. 5. P. 557–568.
40. Pistone K., Eisenman I., Ramanathan V. Radiative heating of an ice-free arctic ocean // Geophys. Res. Lett. 2019. V. 46. P. 7474–7480.
41. Allen R.J., Amiri-Farahani A., Lamarque J.F., Smith C., Shindell D., Hassan T., Chung C.E. Observationally constrained aerosol–cloud semi-direct effects // Clim. Atmos. Sci. 2019. V. 2. P. 16.
42. Mallet M., Solmon F., Nabat P., Elguindi N., Waquet F., Bouniol D., Sayer A.M., Meyer K., Roehrig R., Michou M., Zuidema P., Flamant C., Redemann J., Formenti P. Direct and semi-direct radiative forcing of biomass-burning aerosols over the southeast Atlantic (SEA) and its sensitivity to absorbing properties: A regional climate modeling study // Atmos. Chem. Phys. 2020. V. 20. P. 13191–13216.