Том 35, номер 12, статья № 1

Васильченко С. С., Егоров О. В., Тютерев Вл. Г. Эксперимент по регистрации поглощения озона при переходах в триплетное электронное состояние 3А2 высокочувствительным методом лазерной спектроскопии внутрирезонаторного затухания в интервале 9350–10000 см-1. // Оптика атмосферы и океана. 2022. Т. 35. № 12. С. 971–978. DOI: 10.15372/AOO20221201.
Скопировать ссылку в буфер обмена

Аннотация:

Обсуждаются результаты высокочувствительной регистрации спектра поглощения молекулы озона для системы полос Вульфа в ближнем инфракрасном диапазоне 9350–10000 см-1, соответствующих переходам с основного на возбужденное триплетное электронное состояние. Впервые спектр в этом диапазоне выше основного порога диссоциации молекулы зарегистрирован методом лазерной спектроскопии внутрирезонаторного затухания с непрерывными узкополосными лазерами (cw-CRDS), обеспечивающими высокую чувствительность по коэффициенту поглощения порядка 1 × 10-10 см-1. Описаны методика измерений, схема генерации и контроля концентрации озона. Проведено сравнение с рассчитанными ранее теоретическими спектрами синглет-триплетных полос 3A2(000) ← X1A1(000), 3A2(010) ← X1A1(000) и 3A2(010) ← X1A1(010).

Ключевые слова:

спектр поглощения, переходы в триплетное электронное состояние, система полос Вульфа, лазерная спектроскопия внутрирезонаторного затухания

Иллюстрации:

Список литературы:

1. Barnes P.W., Williamson C.E., Lucas R.M., Robinson S.A., Madronich S., Paul N.D., Bornman J.F., Bais A.F., Sulzberger B., Wilson S.R., Andrady A.L., McKenzie R.L., Neale P.J., Austin A.T., Bernhard G.H., Solomon K.R., Neale R.E., Young P.J., Norval M., Rhodes L.E., Hylander S., Rose K.C., Longstreth J., Aucamp P.J., Ballaré C.L., Cory R.M., Flint S.D., de Gruijl F.R., Häder D.P., Heikkilä A.M., Jansen M.A.K., Pandey K.K., Robson T.M., Sinclair C.A., Wängberg S.Å., Worrest R.C., Yazar S., Young A.R., Zepp R.G. Ozone depletion, ultraviolet radiation, climate change and prospects for a sustainable future // Fac. Sci. Med. Heal. Part B 2019. V. 2, N 7. P. 1. DOI: 10.1038/s41893-019-0314-2.
2. Rawlins W.T., Caledonia G.E., Armstrong R.A. Dynamics of vibrationally excited ozone formed by three‐body recombination. II. Kinetics and mechanism // J. Chem. Phys. 1998. V. 87, N 9. P. 5209. DOI: 10.1063/1. 453689.
3. Luther K., Oum K., Troe J. The role of the radical-complex mechanism in the ozone recombination/dis­sociation reaction // Phys. Chem. Chem. Phys. 2005. V. 7, N 14. P. 2764–2770. DOI: 10.1039/B504178C.
4. Mirahmadi M., Pérez-Ríos J., Egorov O., Tyuterev V., Kokoouline V. Ozone formation in ternary collisions: Theory and experiment reconciled // Phys. Rev. Lett. 2022. V. 128, N 10. P. 108501. DOI: 10.1103/PHYSREVLETT.128.108501/FIGURES/5/MEDIUM.
5. Barbe A., Mikhailenko S., Starikova E., Tyuterev V. High resolution infrared spectroscopy in support of ozone atmospheric monitoring and validation of the potential energy function // Molecul. 2022. V. 27, N 3. P. 911. DOI: 10.3390/MOLECULES27030911.
6. Wenz H., Demtröder W., Flaud J.M. Highly Sensitive Absorption Spectroscopy of the Ozone Molecule around 1.5 mm // J. Mol. Spectrosc. 2001. V. 209, N 2. P. 267–277. DOI: 10.1006/JMSP.2001.8430.
7. Romanini D., Kachanov A.A., Sadeghi N., Stoeckel F. CW cavity ring down spectroscopy // Chem. Phys. Lett. 1997. V. 264. P. 316–322. DOI: 10.1016/S0009-2614(96)01351-6.
8. Kassi S., Campargue A. Cavity ring down spectroscopy with 5 × 10−13 cm−1 sensitivity // J. Chem. Phys. 2012. V. 137, N 23. P. 234201. DOI: 10.1063/1.4769974.
9. Long D.A., Fleisher A.J., Wójtewicz S., Hodges J.T. Quantum-noise-limited cavity ring-down spectroscopy // Appl. Phys. B: Lasers Opt. 2014. V. 115, N 2. P. 149–153. DOI: 10.1007/S00340-014-5808-Z/FIGURES/4.
10. Campargue A., Barbe A., De Backer-Barilly M.R., Tyuterev V.G., Kassi S. The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm-1: New observations and exhaustive review // Phys. Chem. Chem. Phys. 2008. V. 10, N 20. P. 2925–2946. DOI: 10.1039/b719773j.
11. Mondelain D., Campargue A., Kassi S., Barbe A., Starikova E., De Backer M.R., Tyuterev V.G. The CW-CRDS spectra of the 16O/18O isotopologues of ozone between 5930 and 6340 cm-1. Part 1: 16O16O18O // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 116. P. 49–66. DOI: 10.1016/j.jqsrt.2012.10.023.
12. Campargue A., Kassi S., Mondelain D., Barbe A., Starikova E., De Backer M.R., Tyuterev V.G. Detection and analysis of three highly excited vibrational bands of 16O3 by CW-CRDS near the dissociation threshold // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 152. P. 84–93. DOI: 10.1016/j.jqsrt.2014. 10.019.
13. Vasilchenko S., Barbe A., Starikova E., Kassi S., Mondelain D., Campargue A., Tyuterev V. Detection and assignment of ozone bands near 95% of the dissociation threshold: Ultrasensitive experiments for probing potential energy function and vibrational dynamics // Phys. Rev. A 2020. V. 102, N 5. P. 052804. DOI: 10.1103/PhysRevA.102.052804.
14. Vasilchenko S., Barbe A., Starikova E., Kassi S., Mondelain D., Campargue A., Tyuterev V. Cavity-ring-down spectroscopy of the heavy ozone isotopologue 18O3: Analysis of a high energy band near 95% of the dissociation threshold // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 278. P. 108017. DOI: 10.1016/J. JQSRT. 2021.108017.
15. Rusic B. Unpublished results obtained from active thermochemical tables (ATcT) based on the Core (Argonne). 2010 Thermochemical Network version 1.110. URL: https://atct.anl.gov/ (last access: 6.09.2022).
16. Holka F., Szalay P.G., Müller T., Tyuterev V.G. Toward an improved ground state potential energy surface of ozone // J. Phys. Chem. A 2010. V. 114, N 36. P. 9927–9935. DOI: 10.1021/jp104182q.
17. Tyuterev V.G., Kochanov R.V., Tashkun S.A., Holka F., Szalay P.G. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range // J. Chem. Phys. 2013. V. 139, N 13. P. 134307. DOI: 10.1063/1.4821638.
18. Dawes R., Lolur P., Li A., Jiang B., Guo H. Communication: An accurate global potential energy surface for the ground electronic state of ozone // J. Chem. Phys. 2013. V. 139, N 20. P. 201103. DOI: 10.1063/ 1.4837175.
19. Kokoouline V., Lapierre D., Alijah A., Tyuterev V. Localized and delocalized bound states of the main isotopologue 48O3 and of 18O-enriched 50O3 isotopomers of the ozone molecule near the dissociation threshold // Phys. Chem. Chem. Phys. 2020. V. 22, N 28. P. 15885–15899. DOI: 10.1039/D0CP02177F.
20. Wulf O.R., Deming L.S. The effect of visible solar radiation on the calculated distribution of atmospheric ozone // Terr. Magn. Atmos. Electr. 1936. V. 41, N 4. P. 375–378. DOI: 10.1029/TE041I004P00375.
21. Wulf O.R., Deming L.S. The distribution of atmospheric ozone in equilibrium with solar radiation and the rate of maintenance of the distribution // Terr. Magn. Atmos. Electr. 1937. V. 42, N 2. P. 195–202. DOI: 10.1029/TE042I002P00195.
22. Anderson S.M., Mauersberger K. Ozone absorption spectroscopy in search of low-lying electronic states // J. Geophys. Res. 1995. V. 100, N D2. P. 3033. DOI: 10.1029/94JD03003.
23. Günther J., Anderson S.M., Hilpert G., Mauersberger K. Rotational structure in the absorption spectra of 18O3 and 16O3 near 1 μm: A comparative study of the 3A2 and 3B2 states // J. Chem. Phys. 1998. V. 108. N 13. P. 5449. DOI: 10.1063/1.475933.
24. Deppe S.F., Wachsmuth U., Abel B., Bittererová M., Grebenshchikov S.Y., Siebert R., Schinke R. Resonance spectrum and dissociation dynamics of ozone in the 3B2 electronically excited state: Experiment and theory // J. Chem. Phys. 2004. V. 121, N 11. P. 5191. DOI: 10.1063/1.1778381.
25. Xie D., Guo H., Peterson K.A. Ab initio characterization of low-lying triplet state potential-energy surfaces and vibrational frequencies in the Wulf band of ozone // J. Chem. Phys. 2001. V. 115, N 22. P. 10404–10408. DOI: 10.1063/1.1417502.
26. Grebenshchikov S.Y., Qu Z.W., Zhu H., Schinke R. Spin-orbit mechanism of predissociation in the Wulf band of ozone // J. Chem. Phys. 2006. V. 125, N 2. P. 021102. DOI: 10.1063/1.2219444. .
27. Grebenshchikov S.Y., Qu Z.W., Zhu H., Schinke R. New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands // Phys. Chem. Chem. Phys. 2007. V. 9, N 17. P. 2044–2064. DOI: 10.1039/b701020f.
28. Lapierre D., Alijah A., Kochanov R., Kokoouline V., Tyuterev V. Lifetimes and wave functions of ozone metastable vibrational states near the dissociation limit in a full-symmetry approach // Phys. Rev. A. 2016. V. 94, N 4. P. 042514. DOI: 10.1103/PhysRevA.94.­042514.
29. Gordon I.E., Rothman L.S., Hargreaves R.J., Hashemi R., Karlovets E.V., Skinner F.M., Conway E.K., Hill C., Kochanov R.V., Tan Y., Wcisło P., Finenko A.A., Nelson K., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Coustenis A., Drouin B.J., Flaud J.M., Gamache R.R., Hodges J.T., Jacquemart D., Mlawer E.J., Nikitin A.V., Perevalov V.I., Rotger M., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Adkins E.M., Baker A., Barbe A., Canè E., Császár A.G., Dudaryonok A., Egorov O., Fleisher A.J., Fleurbaey H., Foltynowicz A., Furtenbacher T., Harrison J.J., Hartmann J.M., Horneman V.M., Huang X., Karman T., Karns J., Kassi S., Kleiner I., Kofman V., Kwabia-Tchana F., Lavrentieva N.N., Lee T.J., Long D.A., Lukashevskaya A.A., Lyulin O.M., Makhnev V.Y., Matt W., Massie S.T., Melosso M., Mikhailenko S.N., Mondelain D., Müller H.S.P., Naumenko O.V., Perrin A., Polyansky O.L., Raddaoui E., Raston P.L., Reed Z.D., Rey M., Richard C., Tóbiás R., Sadiek I., Schwenke D.W., Starikova E., Sung K., Tamassia F., Tashkun S.A., Vander Auwera J., Vasilenko I.A., Vigasin A.A., Villanueva G.L., Vispoel B., Wagner G., Yachmenev A., Yurchenko S.N. The HITRAN2020 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transf. 2022. V. 277. P. 107949. DOI: 10.1016/J.JQSRT.2021.107949.
30. Delahaye T., Armante R., Scott N.A., Jacquinet-Husson N., Chédin A., Crépeau L., Crevoisier C., Douet V., Perrin A., Barbe A., Boudon V., Campargue A., Coudert L.H., Ebert V., Flaud J.M., Gamache R.R., Jacquemart D., Jolly A., Kwabia Tchana F., Kyuberis A., Li G., Lyulin O.M., Manceron L., Mikhailenko S., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A., Perevalov V.I., Richard C., Starikova E., Tashkun S.A., Tyuterev V.G., Vander Auwera J., Vispoel B., Yachmenev A., Yurchenko S. The 2020 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2021. V. 380. P. 111510. DOI: 10.1016/J.JMS.2021.111510.
31. Barbe A., Mikhailenko S., Starikova E., Tyuterev V. Infrared spectra of 16O3 in the 900–5600 cm-1 range revisited: Empirical corrections to the S&MPO and HITRAN2020 line lists // J. Quant. Spectrosc. Radiat. Transf. 2021. V. 276. P. 107936. DOI: 10.1016/J. JQSRT.2021.107936.
32. Albert D., Antony B.K.K., Ba Y.A., Babikov Y.L., Bollard P., Boudon V., Delahaye F., Del Zanna G., Dimitrijević M.S., Drouin B.J., Dubernet M.-L.L., Duensing F., Emoto M., Endres C.P.P., Fazliev A.Z., Glorian J.-M.M., Gordon I.E., Gratier P., Hill C., Jevremović D., Joblin C., Kwon D.-H.H., Kochanov R.V., Krishnakumar E., Leto G., Loboda P.A., Lukashevskaya A.A., Lyulin O.M., Marinković B.P., Markwick A., Marquart T., Mason N.J., Mendoza C., Millar T.J., Moreau N., Morozov S. V., Möller T., Müller H.S.P.P., Mulas G., Murakami I., Pakhomov Y., Palmeri P., Penguen J., Perevalov V.I., Piskunov N., Postler J., Privezentsev A.I., Quinet P., Ralchenko Y., Rhee Y.-J.J., Richard C., Rixon G., Rothman L.S., Roueff E., Ryabchikova T., Sahal-Bréchot S., Scheier P., Schilke P., Schlemmer S., Smith K.W., Schmitt B., Skobelev I.Y., Srecković V.A., Stempels E., Tashkun S.A., Tennyson J., Tyuterev V.G., Vastel C., Vujčić V., Wakelam V., Walton N.A., Zeippen C., Zwölf C.M. A Decade with VAMDC: Results and Ambitions // Atoms. 2020. V. 8, N 4. P. 76.
33. Anderson S.M., Morton J., Mauersberger K. Near-infrared absorption spectra of 16O3 and 18O3: Adiabatic energy of the 1A2 state? // J. Chem. Phys. 1990. V. 93, N 6. P. 3826. DOI: 10.1063/1.458767.
34. Anderson S.M., Hupalo P., Mauersberger K. Rotational structure in the near-infrared absorption spectrum of ozone // J. Chem. Phys. 1993. V. 99, N 1. P. 737. DOI: 10.1063/1.465747.
35. Banichevich A., Peyerimhoff S.D., Grein F. Potential energy surfaces of ozone in its ground state and in the lowest-lying eight excited states // Chem. Phys. 1993. V. 178, N 1–3. P. 155–188. DOI: 10.1016/0301-0104 (93)85059-H.
36. Braunstein M., Pack R.T. Simple theory of diffuse structure in continuous ultraviolet spectra of polyatomic molecules. III. Application to the Wulf–Chappuis band system of ozone // J. Chem. Phys. 1992. V. 96, N 9. P. 6378. DOI: 10.1063/1.462632.
37. Minaev B., Ågren H. The interpretation of the Wulf absorption band of ozone // Chem. Phys. Lett. 1994. V. 217, N 5–6. P. 531–538. DOI: 10.1016/0009-2614 (93)E1445-M.
38. Bouvier A.J., Inard D., Veyret V., Bussery B., Bacis R., Churassy S., Brion J., Malicet J., Judge R.H. Contribution to the analysis of the 3A2 ← X1A1 “Wulf” transition of ozone by high-resolution fourier transform spectrometry // J. Mol. Spectrosc. 1998. V. 190, N 2. P. 189–197. DOI: 10.1006/jmsp.1998.7578.
39. Bouvier A.J., Veyret V., Russier I., Inard D., Churassy S., Bacis R., Brion J., Malicet J., Judge R.H. Comparative rotational analysis of the 000 bands of the 3A2←X1A1 Wulf transition for the isotopomers 16O3 and 18O3 of ozone by high resolution Fourier transform spectrometry // Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 1999. V. 55, N 14. P. 2811–2821. DOI: 10.1016/S1386-1425(99)00096-7.
40. Bouvier A.J., Wannous G., Churassy S., Bacis R., Brion J., Malicet J., Judge R.H. Spectroscopy and predissociation of the 3A2 electronic state of ozone 16O3 and 18O3 by high resolution Fourier transform spectrometry // Spectrochim. Acta – Part A Mol. Biomol. Spectrosc. 2001. V. 57, N 3. P. 561–579. DOI: 10.1016 /S1386-1425(00)00409-1.
41. Inard D., Bouvie A.J., Baci R., Churass S., Boh F., Brio J., Malice J., Jaco M. Absorption cross-sections and lifetime of the 3A2 “metastable” state of ozone // Chem. Phys. Lett. 1998. V. 287, N 5–6. P. 515–524. DOI: 10.1016/S0009-2614(98)00200-0.
42. Wachsmut U., Abel B. Linewidths and line intensity measurements in the weak 3A2(000) ← X̃1A1(000) band of ozone by pulsed cavity ringdown spectroscopy // J. Geophys. Res. D: Atmos. 2003. V. 108, N 15. P. 4473. DOI: 10.1029/2002jd003126.
43. Vasilchenko S., Mondelain D., Kassi S., Campargue A. Predissociation and pressure dependence in the low frequency far wing of the Wulf absorption band of ozone near 1.2 mm // J. Quant. Spectrosc. Radiat. Transfer. 2021. P. 107678. DOI: 10.1016/j.jqsrt.2021. 107678.
44. Egorov O., Valiev R.R., Kurten T., Tyuterev V. Franck–Condon factors and vibronic patterns of singlet-triplet transitions of 16O3 molecule falling near the dissociation threshold and above // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 273. P. 107834. DOI: 10.1016/J.JQSRT.2021.107834.
45. Vasilchenko S., Mikhailenko S.N., Campargue A. Water vapor absorption in the region of the oxygen A-band near 760 nm // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 275. P. 107847. DOI: 10.1016/J.JQSRT.2021. 107847.
46. Konefał M., Kassi S., Mondelain D., Campargue A. High sensitivity spectroscopy of the O2 band at 1.27 mm: (I) Pure O2 line parameters above 7920 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 241. P. 106653. DOI: 10.1016/j.jqsrt.2019.106653.
47. Campargue A., Mikhailenko S.N., Lohan B.G., Karlovets E.V., Mondelain D., Kassi S. The absorption spectrum of water vapor in the 1.25 mm atmospheric window (7911–8337 cm-1) // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 157. P. 135–152. DOI: 10.1016/j.jqsrt.2015.02.011.
48. Kassi S., Campargue A., Mondelain D., Tran H. High pressure cavity ring down spectroscopy: Application to the absorption continuum of CO2 near 1.7 mm // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 167. P. 97–104. DOI: 10.1016/j.jqsrt.2015.08.014.
49. Tran D.D., Tran H., Vasilchenko S., Kassi S., Campargue A., Mondelain D. High sensitivity spectroscopy of the O2 band at 1.27 mm: (II) air-broadened line profile parameters // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 240. DOI: 10.1016/j.jqsrt.2019.106673.
50. Griggs M. Absorption coefficients of ozone in the ultraviolet and visible regions // J. Chem. Phys. 1968. V. 49, N 2. P. 857–859. DOI: 10.1063/1.1670152.
51. Tyuterev V.G., Kochanov R.V., Tashkun S.A. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands // J. Chem. Phys. 2017. V. 146. P. 064304-1–27. DOI: 10.1063/1.4973977.
52. Егоров О.В. Диабатические поверхности потенциальной энергии взаимодействующих триплетных состояний 3A2 и 3B1 молекулы озона // Оптика атмосф. и океана. 2023 (в печати).
53. Mondelain D., Jost R., Kassi S., Judge R.H., Tyuterev V., Campargue A. Predissociation and spectroscopy of the 3A 2(000) state of 18O3 from CRDS spectra of the 3A 2(000)←X 1A 1(110) hot band near 7900cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113. N 11. P. 840–849. DOI: 10.1016/j.jqsrt.2012. 01.015.