Том 35, номер 05, статья № 6

Разенков И. А. Сопоставление данных турбулентного лидара с метеорологическими измерениями. // Оптика атмосферы и океана. 2022. Т. 35. № 05. С. 381–389. DOI: 10.15372/AOO20220506.
Скопировать ссылку в буфер обмена

Аннотация:

Проведено сравнение параметров турбулентности, полученных при помощи лидара, с параметрами, определенными из средних скорости ветра и температуры воздуха в приземном слое атмосферы. Представлены результаты наблюдений структурной характеристики коэффициента преломления Cn2, определяемой из отношения эхосигналов турбулентного лидара, в приземном слое атмосферы при работе на слабонаклонной трассе. Опробована методика определения скорости диссипации кинетической энергии из лидарных данных.

Ключевые слова:

атмосферная турбулентность, эффект увеличения обратного рассеяния, турбулентный лидар, скорость диссипации кинетической энергии

Список литературы:

1. Виноградов А.Г., Гурвич А.С., Кашкаров С.С., Кравцов Ю.А., Татарский В.И. «Закономерность увеличения обратного рассеяния волн». Свидетельство на открытие № 359. Приоритет открытия: 25 августа 1972 г. в части теоретического обоснования и 12 августа 1976 г. в части экспериментального доказательства закономерности. Государственный реестр открытий СССР // Бюлл. изобретений. 1989. № 21.
2. Кравцов Ю.А., Саичев А.И. Эффекты двукратного прохождения волн в случайно неоднородных средах // Успехи физ. наук. 1982. Т. 137, вып. 3. С. 501–527.
3. Разенков И.А. Турбулентный лидар. I. Конструкция // Оптика атмосф. и океана. 2018. Т. 31, № 1. С. 41–48; Rаzenkov I.А. Turbulent lidar: I – Desing // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 273–280.
4. Разенков И.А. Турбулентный лидар. II. Эксперимент // Оптика атмосф. и океана. 2018. Т. 31, № 2. С. 81–89; Rаzenkov I.А. Turbulent lidar: II – Experiment // Atmos. Ocean. Opt. 2018. V. 31, N 3. P. 281–289.
5. Воробьев В.В. О применимости асимптотических фор­мул восстановления параметров «оптической» турбулентности из данных импульсного лидарного зондирования. I. Уравнения // Оптика атмосф. и океана. 2016. Т. 29, № 10. С. 870–875; Vorob’ev V.V. On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I – Equations // Atmos. Ocean. Opt. 2017. V. 30, N 2. P. 156–161.
6. Разенков И.А. Эвристический подход к определению структурной характеристики Cn2 из лидарных данных // Оптика атмосф. и океана. 2022. Т. 35. № 3. С. 195–204. DOI: 10.15372/AOO20220304.
7. Разенков И.А. Перспективы применения турбулентного УОР-лидара для исследования пограничного слоя атмосферы // Оптика атмосф. и океана. 2021. Т. 34, № 1. С. 26–35; Razenkov I.A. Capabilities of a turbulent BSE-lidar for the study of the atmospheric boundary layer // Atmos. Ocean. Opt. 2021. V. 34, N 3. P. 229–238.
8. Гурвич А.С., Кон А.И., Миронов В.Л., Хмелевцов С.С. Лазерное излучение в турбулентной атмосфере. М.: Наука, 1976. 280 с.
9. Татарский В.И. Распространение волн в турбулентной атмосфере. М: Наука, 1967. 548 с.
10. URL: https://www.lop.iao.ru (last access: 11.02.2022).
11. Одинцов С.Л., Гладких В.А., Камардин А.П., Невзорова И.В. Использование результатов акустической диагностики пограничного слоя атмосферы для оценки влияния турбулентности на характеристики лазерного пучка // Оптика атмосф. и океана. 2017. Т. 30, № 12. С. 1008–1016; Odintsov S.L., Gladkikh V.A., Kamardin A.P., Mamyshev V.P., Nevzorova I.V. Results of acoustic diagnostics of atmospheric boundary layer in estimation of the turbulence effect on laser beam parameters // Atmos. Ocean. Opt. 2018. V. 31, N 6. P. 553–563.
12. Камардин А.П., Одинцов С.Л. Высотные профили структурной характеристики температуры воздуха в пограничном слое атмосферы по содарным измерениям // Оптика атмосф. и океана. 2016. Т. 29, № 8. С. 709–714; Kamardin A.P., Odintsov S.L. Height profiles of the structure characteristic of air temperature in the atmospheric boundary layer from sodar measurements // Atmos. Ocean. Opt. 2017. V. 30, N 1. P. 33–38. DOI: 10.15372/AOO20160813.