Том 35, номер 02, статья № 6

Петров Д. В., Матросов И. И., Таничев А. С., Костенко М. А., Зарипов А. Р. Развитие и применение КР-газоанализаторов, разработанных в ИМКЭС СО РАН. // Оптика атмосферы и океана. 2022. Т. 35. № 02. С. 116–121. DOI: 10.15372/AOO20220205.
Скопировать ссылку в буфер обмена

Аннотация:

Представлены разработки ИМКЭС СО РАН в области газоанализа, основанные на спектроскопии комбинационного рассеяния света (КР). Показаны возможности и преимущества разработанных КР-газоанализаторов на примере измерения состава топливных газов (природный газ, биогаз, синтез-газ), атмосферного и выдыхаемого воздуха. Обсуждаются особенности работы устройств такого типа и методы достижения высокой точности измерений.

Ключевые слова:

спектроскопия комбинационного рассеяния света, газоанализ, атмосферный воздух, метан, диоксид углерода, природный газ

Список литературы:

1. Булдаков М.А., Матросов И.И., Петров Д.В., Тихомиров А.А. СКР-газоанализатор для анализа природных и техногенных газовых сред // Оптика атмосф. и океана. 2012. Т. 25, № 2. С. 152–157; Buldakov M.A., Matrosov I.I., Petrov D.V., Tikhomirov A.A. Raman gas-analyzer for analyzing environmental and technogenic gas media // Atmos. Ocean. Opt. 2012. V. 25, N 4. P. 298–303.
2. Sieburg A., Knebl A., Jacob J.M., Frosch T. Characte­rization of fuel gases with fiber-enhanced Raman spectroscopy // Anal. Bioanal. Chem. 2019. V. 411, N 28. P. 7399–7408.
3. Hanf S., Keiner R., Yan D., Popp J., Frosch T. Fiber-enhanced raman multigas spectroscopy: A versatile tool for environmental gas sensing and breath analysis // Anal. Chem. 2014. V. 86, N 11. P. 5278–5285.
4. Li B., Luo S., Yu A., Gao J., Sun P., Wang X., Zuo D. Sensitive Raman gas analysis using a 500 mW external cavity diode laser at 410 nm // Laser Phys. Lett. 2017. V. 14, N 9. P. 095701.
5. Niklas C., Wackerbarth H., Ctistis G. A short review of cavity-enhanced Raman spectroscopy for gas analysis // Sensors. 2021. V. 21, N 5. P. 1–21.
6. Velez J.G., Muller A. Trace gas sensing using diode-pumped collinearly detected spontaneous Raman scattering enhanced by a multipass cell // Opt. Lett. 2020. V. 45, N 1. P. 133–136.
7. Brooks W.S.M., Partridge M., Davidson I.A.K., Warren C., Rushton G., Large J., Wharton M., Storey J., Wheeler N.V., Foster M.J. Development of a gas-phase Raman instrument using a hollow core anti-resonant tubular fibre // J. Raman Spectrosc. 2021. V. 52, N 10. P. 1772–1782.
8. Buric M.P., Chen K.P., Falk J., Woodruff S.D. Improved sensitivity gas detection by spontaneous Raman scattering // Appl. Opt. 2009. V. 48, N 22. P. 4424–4429.
9. Wen C., Huang X., Wang W., Shen C., Li H. Mul­tiple-pass-enhanced Raman spectroscopy for long-term monitoring of hydrogen isotopologues // J. Raman Spectrosc. 2019. V. 50, N 10. P. 1555–1560.
10. Knebl A., Domes R., Yan D., Popp J., Trumbore S., Frosch T. Fiber-enhanced Raman gas spectroscopy for 18O–13C-labeling experiments // Anal. Chem. 2019. V. 91, N 12. P. 7562–7569.
11. Eichmann S.C., Weschta M., Kiefer J., Seeger T., Leipertz A. Characterization of a fast gas analyzer based on Raman scattering for the analysis of synthesis gas // Rev. Sci. Instrum. 2010. V. 81, N 12. P. 125104.
12. Schlüter S., Krischke F., Popovska-Leipertz N., Seeger T., Breuer G., Jeleazcov C., Schüttler J., Leipertz A. Demonstration of a signal enhanced fast Raman sensor for multi-species gas analyses at a low pressure range for anesthesia monitoring // J. Raman Spectrosc. 2015. V. 46, N 8. P. 708–715.
13. Eichmann S.C., Kiefer J., Benz J., Kempf T., Leipertz A., Seeger T., Seeger T. Determination of gas com­position in a biogas plant using a Raman-based sensor system // Meas. Sci. Technol. 2014. V. 25, N 7. P. 075503.
14. Kiefer J., Seeger T., Steuer S., Schorsch S., Weikl M.C., Leipertz A. Design and characterization of a Raman-scattering-based sensor system for temporally resolved gas analysis and its application in a gas turbine power plant // Meas. Sci. Technol. 2008. V. 19, N 8. P. 085408.
15. Wen C., Huang X., Shen C. Multiple-pass-enhanced multiple-point gas Raman analyzer for industrial process control applications // J. Raman Spectrosc. 2020. V. 51, N 10. P. 2046–2052.
16. Wang P., Chen W., Wan F., Wang J., Hu J. A review of cavity-enhanced Raman spectroscopy as a gas sensing method // Appl. Spectrosc. Rev. 2020. V. 55, N 5. P. 393–417.
17. Petrak B., Cooper J., Konthasinghe K., Peiris M., Djeu N., Hopkins A.J., Muller A. Isotopic gas analysis through Purcell cavity enhanced Raman scattering // Appl. Phys. Lett. 2016. V. 108, N 9. P. 091107.
18. Petrov D.V., Matrosov I.I., Sedinkin D.O. Collection optics for a Raman spectrometer based on the 90° geometry of scattered light collection // Appl. Opt. 2016. V. 55, N 29. P. 8293–8295.
19. Petrov D.V. Multipass optical system for a Raman gas spectrometer // Appl. Opt. 2016. V. 55, N 33. P. 9521–9525.
20. Petrov D.V., Matrosov I.I. Pressure dependence of the Raman signal intensity in high-pressure gases // J. Raman Spectrosc. 2017. V. 48, N 3. P. 474–478.
21. Petrov D.V., Matrosov I.I., Tikhomirov A.A. High-sensitivity spontaneous Raman spectrometer for gaseous Media // J. Appl. Spectrosc. 2015. V. 82, N 1. P. 120–124.
22. Petrov D.V., Matrosov I.I., Kostenko M.A. Possibilities of measuring the exhaled air composition using Raman spectroscopy // Quant. Electron. 2021. V. 51, N 5. P. 389–392.
23. Petrov D.V., Matrosov I.I., Tikhomirov A.A. Raman gas analyzer applicability to monitoring of gaseous air pollution // Proc. of SPIE. 2015. V. 9680. P. 96803C.
24. Hippler M. Cavity-enhanced Raman spectroscopy of natural gas with optical feedback cw-Diode lasers // Anal. Chem. 2015. V. 87, N 15. P. 7803–7809.
25. Khannanov M.N., Van'kov A.B., Novikov A.A., Semenov A.P., Gushchin P.A., Gubarev S.I., Kirpichev V.E., Morozova E.N., Kulik L.V., Kukushkin I.V. Analysis of natural gas using a portable hollow-core photonic crystal coupled Raman spectrometer // Appl. Spectrosc. 2020. V. 74, N 12. P. 1496–1504.
26. Buldakov M.A., Korolev B.V., Matrosov I.I., Petrov D.V., Tikhomirov A.A. Raman gas analyzer for determining the composition of natural gas // J. Appl. Spectrosc. 2013. V. 80, N 1. P. 124–128.
27. Buldakov M.A., Korolkov V.A., Matrosov I.I., Petrov D.V., Tikhomirov A.A., Korolev B.V. Analyzing natural gas by spontaneous Raman scattering spect­roscopy // J. Opt. Technol. 2013. V. 80, N 7. P. 426–430.
28. Petrov D.V., Matrosov I.I. Raman Gas Analyzer (RGA): Natural gas measurements // Appl. Spectrosc. 2016. V. 70, N 10. P. 1770–1776.
29. Petrov D.V., Matrosov I.I. Spectral range for analysis of natural gas by Raman spectroscopy // Proc. SPIE. 2016. V. 10035. P. 1003523.
30. Chibirev I., Mazzoleni C., van der Voort D.D., Borysow J., Fink M. Raman spectrometer for field determination of H2O in natural gas pipelines // J. Nat. Gas Sci. Eng. 2018. V. 55. P. 426–430.
31. Knebl A., Domes C., Domes R., Wolf S., Popp J., Frosch T. Hydrogen and C2–C6 alkane sensing in complex fuel gas mixtures with fiber-enhanced Raman spectroscopy // Anal. Chem. 2021. V. 93, N 30. P. 10546–10552.
32. Petrov D.V., Matrosov I.I., Zaripov A.R., Tanichev A.S., Kostenko M.A., Nekhoroshev A.O. Evaluation of the metrological characteristics of Raman analyzer of natural gas // Meas. Tech. 2021. V. 64, N 3. P. 261–266.
33. Petrov D.V. Raman spectrum of methane in the range 20–40 °C // J. Appl. Spectrosc. 2017. V. 84, N 3. P. 420–424.
34. Petrov D.V. Pressure dependence of peak positions, half widths, and peak intensities of methane Raman bands (ν2, 2ν4, ν1, ν3, and 2ν2) // J. Raman Spectrosc. 2017. V. 48, N 11. P. 1426–1430.
35. Petrov D.V. Raman spectrum of methane in nitrogen, carbon dioxide, hydrogen, ethane, and propane environments // Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2018. V. 191. P. 573–578.
36. Petrov D.V., Matrosov I.I., Zaripov A.R., Maznoy A.S. Effects of pressure and composition on Raman spectra of CO–H2–CO2–CH4 mixtures // Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2019. V. 215. P. 363–370.
37. Petrov D. Depolarization ratios of methane Raman bands as a function of pressure // Molecules. 2020. V. 25, N 8. P. 1951.
38. Petrov D.V. Raman spectrum of ethane in methane environment // J. Raman Spectrosc. 2018. V. 49, N 4. P. 771–774.
39. Petrov D.V., Matrosov I.I., Sedinkin D.O., Zaripov A.R. Raman spectra of nitrogen, carbon dioxide, and hydrogen in a methane environment // Opt. Spectrosc. 2018. V. 124, N 1. P. 8–12.
40. Petrov D.V. Raman spectrum of gaseous propane in methane // J. Appl. Spectrosc. 2018. V. 85, N 3. P. 369–373.
41. Petrov D.V., Matrosov I.I., Zaripov A.R. Raman spectra of n-butane, isobutane, n-pentane, and isopentane in a methane environment // Opt. Spectrosc. 2018. V. 125, N 1. P. 5–9.
42. Dąbrowski K.M., Kuczyński S., Barbacki J., Włodek T., Smulski R., Nagy S. Downhole measurements and determination of natural gas composition using Raman spectroscopy // J. Nat. Gas Sci. Eng. 2019. V. 65. P. 25–31.
43. Tanichev A.S., Petrov D.V. Simulation of n2 Raman band of methane as a function of pressure // J. Raman Spectrosc. 2021. P. 1–10.
44. Таничев А.С., Петров Д.В., Матросов И.И., Шарыбкина К.К. Влияние гелия на спектр комбинационного рассеяния метана в диапазоне 2500–3300 см-1 // Оптика атмосф. и океана. 2021. Т. 34, № 5. С. 329–333. DOI: 10.15372/AOO20210503; Tanichev A.S., Petrov D.V., Matrosov I.I., Sharybkina K.K. Effect of helium on the Raman spectrum of methane in the range 2500–3300 cm1 // Atmos. Ocean. Opt. 2021. V. 34, N 5. P. 395–399.
45. Pieroni D., Hartmann J.-M., Chaussard F., Michaut X., Gabard T., Saint-Loup R., Berger H., Champion J.-P. Experimental and theoretical study of line mixing in methane spectra. III. The Q branch of the Raman n1 band // J. Chem. Phys. 2000. V. 112, N 3. P. 1335–1343.
46. Petrov D.V., Matrosov I.I., Zaripov A.R., Maznoy A.S. Application of Raman spectroscopy for determination of syngas composition // Appl. Spectrosc. 2020. V. 74, N 8. P. 948–953.
47. Petrov D.V. Features of measuring low CO concentrations in N2-containing mixtures at different temperatures using spontaneous raman spectroscopy // Appl. Spectrosc. 2021. V. 75, N 1. P. 81–86.
48. Buldakov M.A., Cherepanov V.N., Korolev B.V., Matrosov I.I. Role of intramolecular interactions in Raman spectra of N2 and O2 molecules // J. Mol. Spectrosc. 2003. V. 217, N 1. P. 1–8.
49. Velez J.S.G., Muller A. Spontaneous Raman scattering at trace gas concentrations with a pressurized external multipass cavity // Meas. Sci. Technol. 2021. V. 32, N 4. P. 045501.
50. Petrov D.V., Matrosov I.I., Zaripov A.R. Determination of atmospheric carbon dioxide concentration using Raman spectroscopy // J. Mol. Spectrosc. 2018. V. 348. P. 137–141.
51. Kostenko M.A., Petrov D.V., Popova M.A., Tanichev A.S. Detection of methane in the air using a laser Raman spectrometer // Proc. SPIE. 2021. V. 12086. P. 1208621.