Том 34, номер 05, статья № 1

Васильченко С. С., Kassi S., Mondelain D., Campargue A. Лазерная спектроскопия высокого разрешения молекулы озона вблизи порога диссоциации. // Оптика атмосферы и океана. 2021. Т. 34. № 05. С. 315–322. DOI: 10.15372/AOO20210501.    PDF
Скопировать ссылку в буфер обмена

Аннотация:

Методом лазерной спектроскопии внутрирезонаторного затухания зарегистрированы высокочувствительные спектры основного изотополога молекулы озона в спектральной области 7920–8670 см-1 на пороге диссоциации и выше. Достигнута чувствительность по коэффициенту поглощения на уровне 2 × 10-11 см-1, которая позволила зарегистрировать комбинационные колебательно-вращательные полосы поглощения до десяти колебательных квантов в основном электронном состоянии. Измерены положения линий и интенсивности соответствующих переходов. Впервые наблюдались также горячие вибронные полосы изотополога 16О3, образованные переходами с нижних колебательных уровней (100), (020) основного электронного состояния на возбужденное электронное состояние триплета 3А2, которые позволят получить информацию о зависимости диссоциацонного уширения спектральных линий от квантовых чисел.

Ключевые слова:

озон, O3 спектроскопия высокого разрешения, порог диссоциации

Список литературы:

1. Fabian P., Dameris M. Ozone in the Atmosphere: Basic Principles, Natural and Human Impacts. Berlin: Springer Berlin Heidelberg, 2014. 137 p. DOI: 10.1007/978-3-642-54099-8.
2. Hu L., Jacob D.J., Liu X., Zhang Y., Zhang L., Kim P.S., Sulprizio M.P., Yantosca R.M. Global budget of tropospheric ozone: Evaluating recent model advances with satellite (OMI), aircraft (IAGOS), and ozonesonde observations // Atmos. Environ. 2017. V. 167. P. 323–334. DOI: 10.1016/j.atmosenv.2017.08.036.
3. Krankowsky D., Mauersberger K. Heavy ozone – a difficult puzzle to solve // Science. 1996. V. 274, N 5291. P. 1324–1325. DOI: 10.1126/science.274.5291.1324.
4. Yi Qin Gao, Marcus R.A. Strange and unconventional isotope effects in ozone formation // Science. 2001. V. 293, N 5528. P. 259–263. DOI: 10.1126/science. 1058528.
5. Schinke R., Grebenshchikov S.Y., Ivanov M.V., Fleurat-Lessard P. Dynamical studies of the ozone isotope effect: A status report // Ann. Rev. Phys. Chem. 2006. V. 57, N 1. P. 625–661. DOI: 10.1146/annurev.physchem.57.032905.104542.
6. Charlo D., Clary D.C. Quantum-mechanical calculations on pressure and temperature dependence of three-body recombination reactions: Application to ozone formation rates // J. Chem. Phys. 2004. V. 120, N 6. P. 2700–2707. DOI: 10.1063/1.1635361.
7. Xie T., Bowman J.M. Quantum inelastic scattering study of isotope effects in ozone stabilization dynamics // Chem. Phys. Lett. 2005. V. 412, N 1–3. P. 131–134. DOI: 10.1016/j.cplett.2005.06.111.
8. Lu Q.B. Correlation between cosmic rays and ozone depletion // Phys. Rev. Lett. 2009. V. 102, N 11. P. 118501. DOI: 10.1103/PhysRevLett.102.118501.
9. Feilberg K.L., Wiegel A.A., Boering K.A. Probing the unusual isotope effects in ozone formation: Bath gas and pressure dependence of the non-mass-dependent isotope enrichments in ozone // Chem. Phys. Lett. 2013. V. 556. P. 1–8. DOI: 10.1016/j.cplett.2012.10.038.
10. Marcus R.A. Theory of mass-independent fractionation of isotopes, phase space accessibility, and a role of isotopic symmetry // Proc. Natl. Acad. Sci. U.S.A. 2013. V. 110, N 44. P. 17703–17707. DOI: 10.1073/ pnas.1213080110.
11. Ruscic B. Unpublished results obtained from active thermochemical tables (ATcT) based on the Core (Argonne), Thermochemical Network version 1.110 2010. URL: https://atct.anl.gov/Thermochemical%20Data/version%20Alpha%201.110/ (last access: 29.02.2021).
12. Holka F., Szalay P.G., Müller T., Tyuterev V.G. Toward an improved ground state potential energy surface of ozone // J. Phys. Chem. A. 2010. V. 114, N 36. P. 9927–9935. DOI: 10.1021/jp104182q.
13. Kaufmann M., Gil-López S., López-Puertas M., Funke B., García-Comas M., Glatthor N., Grabowski U., Hopfner M., Stiller G.P., von Clarmann T., Koukouli M.E., Hoffmann L., Riese M. Vibrationally excited ozone in the middle atmosphere // J. Atmos. Sol.-Terr. Phys. 2006. V. 68, N 2. P. 202–212. DOI: 10.1016/j. jastp.2005.10.006.
14. Feofilov A.G., Kutepov A.A. Infrared radiation in the mesosphere and lower thermosphere: Energetic effects and remote sensing // Surv. Geophys. 2012. V. 33, N 6. P. 1231–1280. DOI: 10.1007/s10712-012-9204-0.
15. Anderson S.M., Klein F.S., Kaufman F. Kinetics of the isotope exchange reaction of 18O with NO and O2 at 298 K // J. Chem. Phys. 1985. V. 83, N 4. P. 1648–1656. DOI: 10.1063/1.449402.
16. Janssen C., Guenther J., Krankowsky D., Mauersberger K. Temperature dependence of ozone rate coefficients and isotopologue fractionation in 16O–18O oxygen mixtures // Chem. Phys. Lett. 2003. V. 367, N 1–2. P. 34–38. DOI: 10.1016/S0009-2614(02)01665-2.
17. Guillon G., Honvault P., Kochanov R., Tyuterev V. First-principles computed rate constant for the O + O2 isotopic exchange reaction now matches experiment // J. Phys. Chem. Lett. 2018. V. 9, N 8. P. 1931–1936. DOI: 10.1021/acs.jpclett.8b00661.
18. Yuen C.H., Lapierre D., Gatti F., Kokoouline V., Tyuterev V.G. The role of ozone vibrational resonances in the isotope exchange reaction 16O16O + 18O ® 18O16O + 16O: The time-dependent picture // J. Phys. Chem. A. 2019. V. 123, N 36. P. 7733–7743. DOI: 10.1021/ acs.jpca.9b06139.
19. Tyuterev V.G., Kochanov R.V., Tashkun S.A., Holka F., Szalay P.G. New analytical model for the ozone electronic ground state potential surface and accurate ab initio vibrational predictions at high energy range // J. Chem. Phys. 2013. V. 139, N 13. P. 134307. DOI: 10.1063/1.4821638.
20. Dawes R., Lolur P., Li A., Jiang B., Guo H. Communication: An accurate global potential energy surface for the ground electronic state of ozone // J. Chem. Phys. 2013. V. 139, N 20. P. 201103. DOI: 10.1063/ 1.4837175.
21. Tyuterev V.G., Kochanov R., Campargue A., Kassi S., Mondelain D., Barbe A., Starikova E., De Backer M.R., Szalay P.G., Tashkun S. Does the “reef structure” at the ozone transition state towards the dissociation exist? New insight from calculations and ultrasensitive spectroscopy experiments // Phys. Rev. Lett. 2014. V. 113, N 14. P. 143002.
22. Tyuterev V.G., Barbe A., Jacquemart D., Janssen C., Mikhailenko S.N., Starikova E.N. Ab initio predictions and laboratory validation for consistent ozone intensities in the MW, 10 and 5 mm ranges // J. Chem. Phys. 2019. V. 150, N 18. P. 184303. DOI: 10.1063/1. 5089134.
23. Tyuterev V.G., Kochanov R.V., Tashkun S.A. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands // J. Chem. Phys. 2017. V. 146, N 6. P. 064304. DOI: 10.1063/1.4973977.
24. Tyuterev Vl.G, Barbe A., Mikhailenko S.N., Starikova E.S., Babikov Yu.L. Towards the intensity consistency of the ozone bands in the infrared range: Ab initio corrections to the S&MPO database // J. Quant. Spectrosc. Radiat. Transfer. 2021.
25. Barbe A., Mikhailenko S., Starikova E., De Backer M.R., Tyuterev V.G., Mondelain D., Kassi S., Campargue A., Janssen C., Tashkun S., Kochanov R., Gamache R., Orphal J. Ozone spectroscopy in the electronic ground state: High-resolution spectra analyses and update of line parameters since 2003 // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 172–190. DOI: 10.1016/j.jqsrt.2013.06.007.
26. Starikova E., Barbe A., Tyuterev V.G. The n3 bands of 17O17O18O and 17O18O17O ozone isotopomers // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 232. P. 87–92. DOI: 10.1016/j.jqsrt.2019.05.002.
27. Starikova E., Barbe A., De Backer M.R., Tyuterev V. Analysis of thirteen absorption bands of 16O18O18O ozone isotopomer in the 950–3500 cm-1 infrared spectral range // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 257. P. 107364. DOI: 10.1016/j.jqsrt.2020.107364.
28. Mikhailenko S., Barbe A. High resolution infrared spectrum of 16O3: The 3600–4300 cm-1 range reinvestigated // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 244. P. 106823. DOI: 10.1016/j.jqsrt.2019.106823.
29. Babikov Y.L., Mikhailenko S.N., Barbe A., Tyuterev V.G. S&MPO – An information system for ozone spectroscopy on the WEB // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 145. P. 169–196. DOI: 10. 1016/j.jqsrt.2014.04.024.
30. Albert D., Antony B.K., Ba Y.A., Babikov Y.L., Bollard P., Boudon V., Delahaye F., Del Zanna G., Dimitrijević M.S., Drouin B.J., Dubernet M.-L., Duensing F., Emoto M., Endres C.P., Fazliev A.Z., Glorian J.-M., Gordon I.E., Gratier P., Hill C., Jevremović D., Joblin C., Kwon D.-H., Kochanov R.V., Krishnakumar E., Leto G., Loboda P.A., Lukashevskaya A.A., Lyulin O.M., Marinković B.P., Markwick A., Marquart T., Mason N.J., Mendoza C., Millar T.J., Moreau N., Morozov S.V., Möller T., Müller H.S.P., Mulas G., Murakami I., Pakhomov Y., Palmeri P., Penguen J., Perevalov V.I., Piskunov N., Postler J., Privezentsev A.I., Quinet P., Ralchenko Y., Rhee Y.-J., Richard C., Rixon G., Rothman L.S., Roueff E., Ryabchikova T., Sahal-Bréchot S., Scheier P., Schilke P., Schlemmer S., Smith K.W., Schmitt B., Skobelev I.Y., Srecković V.A., Stempels E., Tashkun S.A., Tennyson J., Tyuterev V.G., Vastel C., Vujčić V., Wakelam V., Walton N.A., Zeippen C., Zwölf C.M. A Decade with VAMDC: Results and ambitions // Atoms. 2020. V. 8, N 4. P. 76. DOI: 10. 3390/atoms8040076.
31. Campargue A., Kassi S., Romanini D., Barbe A., De Backer-Barilly M.R., Tyuterev V.G. CW-cavity ring down spectroscopy of the ozone molecule in the 6625–6830 cm-1 region // J. Mol. Spectrosc. 2006. V. 240, N 1. P. 1–13. DOI: 10.1016/j.jms.2006.07.010.
32. Campargue A., Barbe A., De Backer-Barilly M.R., Tyuterev V.G., Kassi S. The near infrared spectrum of ozone by CW-cavity ring down spectroscopy between 5850 and 7000 cm-1: New observations and exhaustive review // Phys. Chem. Chem. Phys. 2008. V. 10, N 20. P. 2925–2946. DOI: 10.1039/b719773j.
33. Campargue A., Kassi S., Mondelain D., Barbe A., Starikova E., De Backer M.R., Tyuterev V.G. Detection and analysis of three highly excited vibrational bands of 16O3 by CW-CRDS near the dissociation threshold // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 152. P. 84–93. DOI: 10.1016/j.jqsrt.2014.10.019.
34. Konefał M., Kassi S., Mondelain D., Campargue A. High sensitivity spectroscopy of the O2 band at 1.27 mm: (I) pure O2 line parameters above 7920 cm-1 // J. Quant. Spectrosc. Radiat. Transfer. 2020. V. 241. P. 106653. DOI: 10.1016/j.jqsrt.2019.106653.
35. Kassi S., Campargue A. Cavity ring down spectroscopy with 5 × 10–13 cm-1 sensitivity // J. Chem. Phys. 2012. V. 137, N 23. P. 234201. DOI: 10.1063/1.4769974.
36. Griggs M. Absorption coefficients of ozone in the ultraviolet and visible regions // J. Chem. Phys. 1968. V. 49, N 2. P. 857–859. DOI: 10.1063/1.1670152.
37. Vasilchenko S., Mondelain D., Kassi S., Campargue A. Predissociation and pressure dependence in the low frequency far wing of the Wulf absorption band of ozone near 1.2 µm // J. Quant. Spectrosc. Radiat. Transfer. 2021 (in print).
38. Anderson S.M., Mauersberger K. Ozone absorption spectroscopy in search of low-lying electronic states // J. Geophys. Res. 1995. V. 100, N D2. P. 3033. DOI: 10.1029/94JD03003.
39. Abel B., Charvát A., Deppe S.F. Lifetimes of the lowest triplet state of ozone by intracavity laser ab­sorption spectroscopy // Chem. Phys. Lett. 1997. V. 277, N 4. P. 347–355. DOI: 10.1016/S0009-2614 (97)00893-2.
40. Grebenshchikov S.Y., Qu Z.W., Zhu H., Schinke R. New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands // Phys. Chem. Chem. Phys. 2007. V. 9, N 17. P. 2044–2064. DOI: 10.1039/b701020f.
41. Bouvier A.J., Wannous G., Churassy S., Bacis R., Brion J., Malicet J., Judge R.H. Spectroscopy and predissociation of the 3A2 electronic state of ozone 16O3 and 18O3 by high resolution Fourier transform spectrometry // Spectrochim. Acta A. 2001. V. 57, N 3. P. 561–579. DOI: 10.1016/S1386-1425(00)00409-1.
42. Gordon I.E., Rothman L.S., Hill C., Kochanov R.V., Tan Y., Bernath P.F., Birk M., Boudon V., Campargue A., Chance K.V., Drouin B.J., Flaud J.M., Gamache R.R., Hodges J.T., Jacquemart D., Perevalov V.I., Perrin A., Shine K.P., Smith M.A.H., Tennyson J., Toon G.C., Tran H., Tyuterev V.G., Barbe A., Császár A.G., Devi V.M., Furtenbacher T., Harrison J.J., Hartmann J.M., Jolly A., Johnson T.J., Karman T., Kleiner I., Kyuberis A.A., Loos J., Lyulin O.M., Massie S.T., Mikhailenko S.N., Moazzen-Ahmadi N., Müller H.S.P., Naumenko O.V., Nikitin A.V., Polyansky O.L., Rey M., Rotger M., Sharpe S.W., Sung K., Starikova E., Tashkun S.A., Auwera J. V., Wagner G., Wilzewski J., Wcisło P., Yu S., Zak E.J. The HITRAN2016 molecular spectroscopic database // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 3–69. DOI: 10.1016/j.jqsrt. 2017.06.038.
43. Jacquinet-Husson N., Armante R., Scott N.A., Chédin A., Crépeau L., Boutammine C., Bouhdaoui A., Crevoisier C., Capelle V., Boonne C., Poulet-Crovisier N., Barbe A., Chris Benner D., Boudon V., Brown L.R., Buldyreva J., Campargue A., Coudert L.H., Devi V.M., Down M.J., Drouin B.J., Fayt A., Fittschen C., Flaud J.-M., Gamache R.R., Harrison J.J., Hill C., Hodnebrog Ø., Hu S.-M., Jacquemart D., Jolly A., Jiménez E., Lavrentieva N.N., Liu A.-W., Lodi L., Lyulin O.M., Massie S.T., Mikhailenko S., Müller H.S.P., Naumenko O.V., Nikitin A., Nielsen C.J., Orphal J., Perevalov V.I., Perrin A., Polovtseva E., Predoi-Cross A., Rotger M., Ruth A.A., Yu S.S., Sung K., Tashkun S.A., Tennyson J., Tyuterev V.G., Vander Auwera J., Voronin B.A., Makie A. The 2015 edition of the GEISA spectroscopic database // J. Mol. Spectrosc. 2016. V. 327. P. 31–72. DOI: 10.1016/j.jms.2016.06.007.
44. Vasilchenko S., Barbe A., Starikova E., Kassi S., Mondelain D., Campargue A., Tyuterev V. Detection and assignment of ozone bands near 95% of the dissociation threshold: Ultrasensitive experiments for probing potential energy function and vibrational dynamics // Phys. Rev. A 2020. V. 102, N 5. P. 052804. DOI: 10.1103/PhysRevA.102.052804.
45. Dawes R., Lolur P., Ma J., Guo H. Communication: Highly accurate ozone formation potential and implications for kinetics // J. Chem. Phys. 2011. V. 135, N 8. P. 081102. DOI: 10.1063/1.3632055.
46. Kokoouline V., Lapierre D., Alijah A., Tyuterev V. Localized and delocalized bound states of the main isotopologue 48O3 and of 18O-enriched 50O3 isotopomers of the ozone molecule near the dissociation threshold // Phys. Chem. Chem. Phys. 2020. V. 22, N 28. P. 15885–15899. DOI: 10.1039/d0cp02177f.
47. Teplukhin A., Babikov D. A full-dimensional model of ozone forming reaction: The absolute value of the recombination rate coefficient, its pressure and temperature dependencies // Phys. Chem. Chem. Phys. 2016. V. 18, N 28. P. 19194–19206. DOI: 10.1039/ c6cp02224c.
48. Ndengué S., Dawes R., Wang X.G., Carrington T., Sun Z., Guo H. Calculated vibrational states of ozone up to dissociation // J. Chem. Phys. 2016. V. 144, N 7. P. 74302. DOI: 10.1063/1.4941559.
49. Lapierre D., Alijah A., Kochanov R., Kokoouline V., Tyuterev V. Lifetimes and wave functions of ozone metastable vibrational states near the dissociation limit in a full-symmetry approach // Phys. Rev. A. 2016. V. 94, N 4. P. 042514. DOI: 10.1103/PhysRevA.94. 042514.
50. Alijah A., Lapierre D., Tyuterev V. Non-adiabatic coupling in the ozone molecule // Mol. Phys. 2018. V. 116, N 19–20. P. 2660–2670. DOI: 10.1080/00268976. 2018.1473650.
51. Perevalov V.I., Tyuterev V.G. Reduction of the centrifugal distortion Hamiltonian of asymmetric top molecules in the case of accidental resonances: Two interacting states. Lower-order terms // J. Mol. Spectrosc. 1982. V. 96, N 1. P. 56–76. DOI: 10.1016/0022-2852(82)90214-4.
52. Starikov V.I., Tashkun S.A., Tyuterev V.G. Description of vibration-rotation energies of nonrigid triatomic molecules using the generating function method. Bending states and second triad of water // J. Mol. Spectrosc. 1992. V. 151, N 1. P. 130–147. DOI: 10. 1016/0022-2852(92)90010-L.
53. Mellau G., Mikhailenko S.N., Starikova E.N., Tashkun S.A., Over H., Tyuterev V.G. Rotational levels of the (000) and (010) states of D216O from hot emission spectra in the 320–860 cm-1 region // J. Mol. Spectrosc. 2004. V. 224, N 1. P. 32–60. DOI: 10.1016/j. jms.2003.12.005.
54. Mikhailenko S.N., Tyuterev V.G., Starikov V.I., Albert K.K., Winnewisser B.P., Winnewisser M., Mellau G., Camy-Peyret C., Lanquetin R., Flaud J.M., Brault J.W. Water spectra in the region 4200–6250 cm-1, extended analysis of v1 + v2, v2 + v3, and 3v2 bands and confirmation of highly excited states from flame spectra and from atmospheric long-path observations // J. Mol. Spectrosc. 2002. V. 213, N 2. P. 91–121. DOI: 10.1006/jmsp.2002.8558.
55. Nikitin A., Champion J.P., Tyuterev V.G., Brown L.R., Mellau G., Lock M. The infrared spectrum of CH3D between 900 and 3200 cm-1: Extended assignment and modeling // J. Mol. Struct. 2000. V. 517–518. P. 1–24. DOI: 10.1016/S0022-2860(99)00235-5.
56. Nikitin A., Brown L.R., Féjard L., Champion J.P., Tyuterev V.G. Analysis of the CH3D nonad from 2000 to 3300 cm-1 // J. Mol. Spectrosc. 2002. V. 216, N 2. P. 225–251. DOI: 10.1006/jmsp.2002.8566.
57. Watson J.K.G. Determination of centrifugal distortion coefficients of asymmetric-top molecules // J. Chem. Phys. 1967. V. 46, N 5. P. 1935–1949. DOI: 10.1063/1.1840957.
58. Flaud J.M., Bacis R. The ozone molecule: Infrared and microwave spectroscopy // Spectrochim. Acta A. 1998. V. 54, N 1. P. 3–16. DOI: 10.1016/S1386-1425(97)00214-X.
59. Rosmus P., Palmieri P., Schinke R. The asymptotic region of the potential energy surfaces relevant for the O(3P) + O2(X3Sg-)  O3 reaction // J. Chem. Phys. 2002. V. 117, N 10. P. 4871–4877. DOI: 10.1063/1.1491396.
60. Holka F., Szalay P.G., Fremont J., Rey M., Peterson K.A., Tyuterev V.G. Accurate ab initio determination of the adiabatic potential energy function and the Born-Oppenheimer breakdown corrections for the electronic ground state of LiH isotopologues // J. Chem. Phys. 2011. V. 134, N 9. P. 94306. DOI: 10.1063/1. 3555758.
61. Tajti A., Szalay P.G., Kochanov R., Tyuterev V.G. Diagonal Born-Oppenheimer corrections to the ground electronic state potential energy surfaces of ozone: Improvement of ab initio vibrational band centers for the 16O3, 17O3 and 18O3 isotopologues // Phys. Chem. Chem. Phys. 2020. V. 22, N 42. P. 24257–24269. DOI: 10.1039/d0cp02457k.
62. Egorov O.V., Mauguiere F., Tyuterev V.G. Periodic orbits and bifurcations of the vibrational modes of the ozone molecule at high energies // Russ. Phys. J. 2020. V. 62. N 10. P. 1917–1925. DOI: 10.1007/ s11182-020-01923-w.
63. Egorov O.V., Tretyakov A.K. Comparative Analysis of the interaction potentials of the ozone molecule with atoms of noble gases: O3–Ar and O3–He complexes // Russ. Phys. J. 2020. V. 63, N 4. P. 607–615. DOI: 10.1007/s11182-020-02076-6.
64. Rey M., Nikitin A.V., Tyuterev V.G. First principles intensity calculations of the methane rovibrational spectra in the infrared up to 9300 cm-1 // Phys. Chem. Chem. Phys. 2013. V. 15, N 25. P. 10049–10061. DOI: 10.1039/c3cp50275a.
65. Rey M., Nikitin A.V., Tyuterev V.G. Theoretical hot methane line lists up to T = 2000 K for astrophysical applications // Astrophys. J. 2014. V. 789, N 1. P. 2. DOI: 10.1088/0004-637X/789/1/2.