Том 33, номер 10, статья № 8

Журавлева Т. Б. Влияние формы и размеров кристаллических частиц на угловые распределения пропущенной солнечной радиации в двух геометрических схемах зондирования: результаты численного моделирования. // Оптика атмосферы и океана. 2020. Т. 33. № 10. С. 798–804. DOI: 10.15372/AOO20201008.    PDF
Скопировать ссылку в буфер обмена

Аннотация:

Рассматриваются результаты статистического моделирования интенсивности пропущенного солнечного излучения в присутствии оптически тонких перистых облаков для двух геометрических схем зондирования – альмукантарате Солнца и гибридного сканирования (фотометрическая сеть AERONET). Численные эксперименты выполнены с использованием моделей кристаллической облачности: OPAC (гексагональные частицы с гладкой поверхностью) и модель, предложенная группой авторов в составе Baum B.A., Yang P., Heymsfield A.J. и др. (смесь частиц разной формы, гексагональные столбики и агрегаты из гексагональных столбиков с сильно шероховатой поверхностью). Представлены оценки влияния формы и размеров ледяных кристаллов на угловые распределения нисходящей радиации в спектральных каналах 440 и 870 нм для фоновых атмосферных ситуаций, наблюдаемых в г. Томске в летний период.

Ключевые слова:

метод Монте-Карло, модели кристаллической облачности, угловые распределения нисходящего солнечного излучения, AERONET

Иллюстрации:

Список литературы:

1. Holben B.N., Eck T.F., Slutsker I., Tanre D., Buis J.P., Setzer A., Vermore E., Reagan J.A., Kaufman Y.J., Nakajima T., Lavenu F., Jankowiak I., Smirnov A. AERONET – a federal instrument network and data archive for aerosol characterization // Remote Sens. Environ. 1998. V. 66, N 1. P. 1–16.
2. Sayer A.M., HsuN C., Lee J., Kim W.V., Dutcher S.T. Validation, stability, and consistency of MODIS collection 6.1 and VIIRS version 1 Deep Blue aerosol data over land // J. Geophys. Res.: Atmos. 2019. V. 124, iss. 8. P. 4658–4688.
3. Levy R.C., Munchak L.A., Mattoo S., Patadia F., Reme L.A., Holz R.E. Towards a long-term global aerosol optical depth record: applying a consistent aerosol ret­rieval algorithm to MODIS and VIIRS-observed reflectance // Atmos. Meas. Tech. 2015. V. 8. P. 4083–4110.
4. Remer L.A., Kaufman Y.J., Tanré D., Mattoo S., Chu D.A., Martins J.V., Li R., Ichoku C., Levy R.C., Kleidman R.G., Eck T.F., Vermote E., Holben B.N. The MODIS aerosol algorithm, products, and validation // J. Atmos. Sci. 2005. V. 62, iss. 4. P. 947–973.
5. Holzer-Popp T., de Leeuw G., Griesfeller J., Marty­nenko D., Klüser L., Bevan S., Davies W., Ducos F., Deuzé J.L., Graigner R. G., Heckel A., von Hoyningen-Hüne W., Kolmonen P., Litvinov P., North P., Poulsen C.A., Ramon D., Siddans R., Sogacheva L., Tanre D., Thomas G.E., Vountas M., Descloitres J., Griesfeller J., Kinne S., Schulz M., Pinnock S. Aerosol retrieval experiments in the ESA Aerosol_cci project // Atmos. Meas. Tech. 2013. V. 6. P. 1919–1957.
6. Jethva H., Torres O., Ahn C. Global assessment of OMI aerosol single‐scattering albedo using ground‐based AERONET inversion // J. Geophys. Res.: Atmos. 2014. V. 119, iss. 14. P. 9020–9040.
7. Афонин С.В., Белов В.В., Белан Б.Д., Панченко М.В., Сакерин С.М., Кабанов Д.М. Сравнение спутниковых (AVHRR/NOAA) и наземных измерений характеристик атмосферного аэрозоля // Оптика атмосф. и океана. 2002. Т. 15, № 12. С. 1118–1123.
8. Афонин С.В., Белов В.В., Панченко М.В., Сакерин С.М., Энгель М.В. Корреляционный анализ пространственных полей аэрозольной оптической толщи на основе спутниковых данных MODIS // Оптика атмосф. и океана. 2008. Т. 21, № 6. С. 510–515.
9. Garcıa O.E., Dıaz A.M., Exposito F.J., Dıaz J.P., Dubovik O., Dubuisson P., Roger J.-C., Eck T.F., Sinyuk A., Derimian Y., Dutton E.G., Schafer J.S., Holben B.N., Garcıa C.A. Validation of AERONET estimates of atmospheric solar fluxes and aerosol radiative forcing by ground-based broadband measurements // J. Geophys. Res. 2008. V. 113, N D21207. DOI: 10. 1029/2008JD010211.
10. Garcıa O. E., Dıaz J. P., Exposito F. J., Dıaz A. M., Dubovik O., Derimian Y., Dubuisson P., Roger J.-C. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data // Atmos. Chem. Phys. 2012. V. 12. P. 5129–5145.
11. Zhuravleva T.B., Kabanov D.M., Nasrtdinov I.M., Russkova T.V., Sakerin S.M., Smirnov A., Holben B.N. Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012 // Atmos. Meas. Tech. 2017. V. 10. P.179–198.
12. Derimian Y., Dubovik O., Huang X., Lapyonok T., Litvinov P., Kostinski A.B., Dubuisson P., Ducos F. Comprehensive tool for calculation of radiative fluxes: illustration of shortwave aerosol radiative effect sensitivities to the details in aerosol and underlying surface characteristics // Atmos. Chem. Phys. 2016. V. 16. P. 5763–5780.
13. Lee J., Kim J., Song C., Kim S., Chun Y., Sohn B., Holben B. Characteristics of aerosol types from AERONET sunphotometer measurements // Atmos. Environ. 2010. V. 44. P. 3110–3117.
14. Russell P.B., Bergstrom R.W., Shinozuka Y., Clarke A.D., DeCarlo P.F., Jimenez J.L., Livingston J.M., Redemann J., Dubovik O., Strawa A. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition // Atmos. Chem. Phys. 2010. V. 10. P. 1155–1169.
15. Giles D.M., Holben B.N., Eck T.F., Sinyuk A., Smirnov A., Slutsker I., Dickerson R., Thompson A., Schafer J. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions // J. Geophys. Res. 2012. V. 117, N D17203. DOI: 10.1029/2012JD018127.
16. Shin S.-K., Tesche M., Noh Y., Müller D. Aerosol-type classification based on AERONET version 3 inversion products // Atmos. Meas. Tech. 2019. V. 12. P. 3789–3803.
17. Dubovik O., King M. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements // J. Geophys. Res. 2000. V. 105, N D16. P. 20673–20696.
18. Dubovik O., Sinyuk A., Lapyonok T., Holben B.N., Mishchenko M., Yang P., Eck T.F., Volten H., Munoz O., Veihelmann B., van der Zande W.J., Leon J.F., Sorokin M., Slutsker I. Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust // J. Geophys. Res. 2006. V. 111, N D11208. DOI: 10.1029/2005JD006619.
19. Sinyuk A., Holben B.N., Eck T.F., Giles D.M., Slutsker I., Korkin S., Schafer J.S., Smirnov A., Sorokin M., Lyapustin A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2 // Atmos. Meas. Tech. 2020. V. 13. P. 3375–3411.
20. Holben B.N., Eck T.F., Slutsker I., Smirnov A., Sinyuk A., Schafer J., Giles D., Dubovik O. Aeronet’s Version 2.0 quality assurance criteria // Proc. SPIE. 2006. V. 6408. DOI: 10.1117/12.706524.
21. Smirnov A., Zhuravleva T.B., Segal-Rosenheimer M., Holben B.N. Limitations of AERONET SDA product in presence of cirrus clouds // J. Quant. Spectrosc. Radiat. Transf. 2018. V. 206. P. 338–341.
22. Wylie D.P., Jackson D.L., Menzel W.P., Bates J.J. Trends in global cloud cover in two decades of HIRS observations // J. Climate. 2005. V. 18, iss. 15. P. 3021–3031.
23. Sassen K., Wang Z., Liu D. Global distribution of cirrus clouds from CloudSat/Cloud-Aerosol lidar and infrared Pathfinder satellite observations (CALIPSO) measurements // J. Geophys. Res. D. 2008. V. 113. DOI: 10.1029/2008JD009972.
24. Мазин И.П., Шметер С.М. Облака, cтроение и физика образования. Л.: Гидрометеоиздат, 1983. 279 с.
25. Baum B.A., Heymsfield A.J., Yang P., Bedka S.T. Bulk scattering models for the remote sensing of ice clouds. Part 1: Microphysical data and models // J. Appl. Meteor. 2005. V. 44, iss. 12. P. 1885–1895.
26. Heymsfield A.J., Schmitt C., Bansemer A. Ice cloud particle size distributions and pressure dependent ter­minal velocities from in situ observations at temperatures from 0° to -86° C // J. Atmos. Sci. 2013. V. 70. P. 4123–4154.
27. Fridlind A.M., Atlas R., van Diedenhoven B., Um J., McFarquhar G.M., Ackerman A.S., Moyer E.J., Lawso R.P. Derivation of physical and optical properties of mid-latitude cirrus ice crystals for a size-resolved cloud microphysics model // Atmos. Chem. Phys. 2016. V. 16. P. 7251–7283.
28. Kienast-Sjögren E., Rolf C., Seifert P., Krieger U.K., Luo B.P., Krämer M., Peter T. Climatological and radiative properties of midlatitude cirrus clouds derived by automatic evaluation of lidar measurements // Atmos. Chem. Phys. 2016. V. 16. P. 7605–7621.
29. Hess M., Koepke P., Schult I. Optical properties of aerosols and clouds: The software package OPAC // Bull. Am. Meteorol. Soc. 1998. V. 79. P. 831–844.
30. Baum B.A., Yang P., Heymsfield A.J., Platnick S., King M.D., Hu Y.-X., Bedka S.T. Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models // J. 3Appl. Meteorol. 2005. V. 44, iss. 12. P. 1896–1911.
31. Baum B.A., Yang P., Heymsfield A.J., Schmitt C.G., Xie Y., Bansemer A., Hu Y.X., Zhang Z. Improvements in shortwave bulk scattering and absorption models for the remote sensing of ice clouds // J. Appl. Meteorol. Clim. 2011. V. 50, iss. 5. P. 1037–1056.
32. Baum B.A., Yang P., Heymsfield A.J., Bansemer A., Merrelli A., Schmitt C., Wang C. Ice cloud bulk single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm // J. Quant. Spectrosc. Radiant. Transf. 2014. V. 146. P. 123–139.
33. Журавлева Т.Б. Моделирование переноса солнечного излучения в различных атмосферных условиях. Часть I: Детерминированная атмосфера // Оптика атмосф. и океана. 2008. Т. 21, № 2. С. 99–114.
34. Zhuravleva T.B., Nasrtdinov I.M., Russkova T.V., Chesnokova T.Yu. Mathematical simulation of brightness fields in broken clouds for observations from Earth’s surface and from space in plane and spherical atmospheric models // Proc. SPIE. 2016. V. 10035. P. 1003502.
35. Назаралиев М.А. Статистическое моделирование радиационных процессов в атмосфере. Новосибирск: Наука, 1990. 226 с.
36. Kneizys F.X., Robertson D.S., Abreu L.W., Acharya P., Anderson G.P., Rothman L.S., Chetwynd J.H., Selby J.E.A., Shetle E.P., Gallery W.O., Berk A., Clough S.A., Bernstein L.S. The MODTRAN 2/3 report and LOWTRAN 7 Model // Phillips Laboratory, Geophysics Directorate. Hanscom AFB, MA 01731-3010. 1996. 260 p.
37. Hook S.J. ASTER Spectral Library: Johns Hopkins University (JHU) spectral library; Jet Propulsion Laboratory (JPL) spectral library; The United States Geological Survey (USGS-Reston) spectral library [Electron resource]. 1998. Dedicated CD-ROM. Version1.2.
38. Shiobara M., Asano S. Estimation of cirrus optical thickness from Sun-photometer measurements // J. Appl. Meteorol. 1994. V. 33, iss. 6. P. 672–681.
39. Segal-Rosenheimer M., Russell P.B., Livingston J.M., Ramachandran S., Redemann J., Baum B.A. Retrieval of cirrus properties by Sun photometry: A new perspective on an old issue // J. Geophys. Res.: Atmos. 2013. V. 118. P. 4503–4520.