Том 33, номер 03, статья № 9
Скопировать ссылку в буфер обмена
Аннотация:
Представлены результаты лабораторных экспериментов по регистрации сигналов обратнорассеянного излучения ИК-лазера от аэрозольных частиц, содержащих органические примеси. Исследования выполнены на лабораторном стенде по схеме лидарного зондирования на контролируемой оптической трассе. В качестве модельных сред использовались водный аэрозоль и водные растворы, содержащие органические примеси: триптофан, изопропиловый спирт, глицерин, никотинамидадениндинуклеотид. Результаты измерений сигналов обратного рассеяния для различных органических примесей в исследуемых аэрозольных частицах показывают возможность использования ИК-лазеров со сканированием частоты излучения для дистанционного зондирования атмосферного органического аэрозоля.
Ключевые слова:
лабораторное моделирование, CO2-лазер, длинноволновый лидар, дистанционное зондирование
Список литературы:
1. Measures R.M. Laser Remote Sensing: Fundamentals and Applications. Malabar, Florida, USA: Krieger publishing company, 1992. 510 p.
2. Warren R.E., Vanderbeek R.G., Ben-David A., Ahl J.L. Simultaneous estimation of aerosol cloud concentration and spectral backscatter from multiple-wavelength LIDAR data // Appl. Opt. 2008. V. 47, N 24. P. 4309–4320.
3. Swim C., Vanderbeek R., Emge D., Wong A. Overview of chem-bio sensing // Proc. SPIE. 2006. V. 6218, P. 730408.
4. Gurton K.P., Ligon D., Dalmani R. Measured infrared optical cross sections for a variety of chemical and biological aerosol stimulants // Appl. Opt. 2004. V. 43, N 23. P. 4564–4570.
5. Richardson J.M., Aldridge J.C., Milstein A.B., Lacirignola J.J. Aerosol elastic scatter signature in the near and mid-wave IR spectral regions // Proc. SPIE. 2009. V. 7323. P. 73230Q-1–9.
6. Warren R.E., Wanderbeek R.G., Ahl J.L. Detection and classification of atmospheric aerosol using multi-wavelength LWIR LIDAR // Proc. SPIE. 2009. V. 7304. P. 73040E-1–7.
7. Thrush E., Salciccioli N., Brown D.M., Siegrist C., Brown A.M., Thomas M.E., Boggs N., Carter C.C. Backscatter signatures of biological aerosols in the infrared // Appl. Opt. 2012. V. 51, N 12. P. 1836–1842.
8. Baxter K., Castle M., Barrington S., Withers P., Foot V., Pigkering A., Felton N. UK small scale UVLIF LIDAR for standoff BW detection // Proc. SPIE. 2007. V. 6739. P. 67390Z-1–10.
9. Gritsuta A.N., Klimkin A.V., Kokhanenko G.P., Kuryak A.N., Osipov K.Yu., Ponomarev Yu.N., Simonova G.V. Mobile multi-wavelength aerosol lidar // Int. J. Remote Sens. 2018. V. 39, N 24. P. 9400–9414.
10. Бобровников С.М., Горлов Е.В., Жарков В.И. Дистанционное обнаружение следов высокоэнергетических материалов на идеальной подложке с помощью эффекта СКР // Оптика атмосф. и океана. 2017. Т. 30, № 8. С. 691–695; Bobrovnikov S.M., Gorlov E.V., Zharkov V.I. Remote Detection of Traces of High-Energy Materials on an Ideal Substrate Using the Raman Effect // Atmos. Ocean. Opt. 2017. V. 30, N 6. P. 604–608.
11. Fiorani L., Colao F., Palucci A. Measurement of Mount Etna plume by CO2-laser-based lidar // Opt. Lett. 2009. V. 34, iss. 6. P. 800–802.
12. Романовский О.А., Садовников С.А., Харченко О.В., Яковлев С.В. Дистанционный анализ содержания метана в атмосфере ИК-лидарной системой дифференциального поглощения в спектральном диапазоне 3300–3430 нм // Оптика атмосф. и океана. 2019. Т. 32, № 11. С. 896–901.
13. Hu Yihua, Zhao Xinying, Gu Youlin, Chen Xi, Wang Xinyu, Wang Peng, Zheng Zhiming, Dong Xiao. Significant broadband extinction abilities of bioaerosols // Sci. China Mater. 2019. V. 62, N 7. P. 1033–1045.
14. Thrush E., Salciccioli N., Brown D.M., Siegrist K., Brown A.M., Thomas M.E., Boggs N., Carter C.C. Backscatter signatures of biological aerosols in the infrared // Appl. Opt. 2012. V. 51, N 12. P. 1836–1842.
15. Klimkin A., Kokhanenko G., Kuryak A., Osipov K., Sokovikov V., Zhang Shuo. New stand for fluorescence study // Proc. SPIE. 2018. V. 10614. P. 106140S-1–5.