Том 32, номер 01, статья № 6

Герасимов В. В., Зуев В. В., Савельева Е. С. Следы канадских пирокумулятивных облаков в стратосфере над Томском в июне – июле 1991 г.. // Оптика атмосферы и океана. 2019. Т. 32. № 01. С. 39-46. DOI: 10.15372/AOO20190106.    PDF
Скопировать ссылку в буфер обмена

Аннотация:

Пересмотрены результаты лидарного зондирования аэрозоля в стратосфере над Томском за период с 29 июня по 14 июля 1991 г., первоначально интерпретированные как аэрозольные слои после извержения вулкана Пинатубо. С помощью траекторной модели NOAA HYSPLIT показано, что аэрозольные слои, зарегистрированные 29 июня и 11 июля на высотах 12 и 14,2 км соответственно, являлись стратосферным дымовым шлейфом от крупных лесных пожаров, имевших место в июне 1991 г. в провинции Квебек (Канада). Продукты горения достигли стратосферы за счет конвективного подъема внутри пирокумулятивного облака (pyroCb), зарегистрированного 19 июня в 100 км к западу от г. Бэ-Комо (Квебек, Канада). Аэрозольные слои, наблюдаемые 8, 9 и 14 июля на высотах от 11 до 16,5 км, представляли собой суперпозиции дымового шлейфа от квебекского pyroCb и первых следов извержения вулкана Пинатубо.

Ключевые слова:

стратосферный аэрозоль, лидар, Пинатубо, пирокумулятивное облако, крупный лесной пожар

Список литературы:

1. Fierstein J., Hildreth W. The plinian eruptions of 1912 at Novarupta, Katmai National Park, Alaska // Bull. Volcanol. 1992. V. 54, N 8. P. 646–684.
2. McCormick M.P., Veiga R.E. Sage II measurements of early Pinatubo aerosols // Geophys. Res. Lett. 1992. V. 19, N 2. P. 155–158.
3. Stowe L., Carey R.M., Pellegrino P.P. Monitoring the Mt. Pinatubo aerosol layer with NOAA/11 AVHRR data // Geophys. Res. Lett. 1992. V. 19, N 2. P. 159–162.
4. Lambert A., Grainger R.G., Remedios J.J., Rodgers C.D., Corney M., Taylor F.W. Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS // Geophys. Res. Lett. 1993. V. 20, N 12. P. 1287–1290.
5. DeFoor T.E., Robinson E., Ryan S. Early lidar observations of the June 1991 Pinatubo eruption plume at Mauna Loa Observatory, Hawaii // Geophys. Res. Lett. 1992. V. 19, N 2. P. 187–190.
6. Post M.J., Grund C.J., Langford A.O., Proffitt M.H. Observations of Pinatubo ejecta over Boulder, Colorado by lidars of three different wavelengths // Geophys. Res. Lett. 1992. V. 19, N 2. P. 195–198.
7. Hayashida S., Sasano Y. Stratospheric aerosol change in the early stage of volcanic disturbance by the Pinatubo eruption observed over Tsukuba, Japan // Geophys. Res. Lett. 1993. V. 20, N 7. P. 575–578.
8. Gobbi G.P., Congeduti F., Adriani A. Early stratospheric effects of the Pinatubo eruption // Geophys. Res. Lett. 1992. V. 19, N 10. P. 997–1000.
9. Chazette P., David C., Lefrère J., Godin S., Pelon J., Mégie G. Comparative lidar study of the optical, geometrical, and dynamical properties of stratospheric post-volcanic aerosols, following the eruptions of El Chichon and Mount Pinatubo // J. Geophys. Res. D. 1995. V. 100, N 11. P. 23195–23207.
10. Jäger H. The Pinatubo eruption cloud observed by lidar at Garmisch-Partenkirchen // Geophys. Res. Lett. 1992. V. 19, N 2. P. 191–194.
11. Sheridan P.J., Schnell R.C., Hofmann D.J., Deshler T. Electron microscope studies of Mt. Pinatubo aerosol layers over Laramie, Wyoming during summer 1991 // Geophys. Res. Lett. 1992. V. 19, N 2. P. 203–206.
12. Woods D.C., Osborn M.T. Twenty-six years of lidar monitoring of northern midlatitude stratospheric aerosols // Proc. SPIE. 2001. V. 4168. P. 249–255.
13. Бурлаков В.Д., Ельников А.В., Зуев В.В., Маричев В.Н., Правдин В.Л. Следы извержения вулкана Пинатубо в стратосфере над Западной Сибирью (Томск, 56° с.ш.) // Оптика атмосф. и океана. 1992. Т. 5, № 6. С. 602–604.
14. Белан Б.Д., Ельников А.В., Зуев В.В., Зуев В.Е., Макиенко Э.В., Маричев В.Н. Результаты исследования оптических и микроструктурных характеристик стратосферного аэрозоля методом обращения лидарных измерений в г. Томске летом 1991 г. // Оптика атмосф. и океана. 1992. Т. 5, № 6. С. 593–601.
15. Fromm M., Lindsey D.T., Servranckx R., Yue G., Trickl T., Sica R., Doucet P., Godin-Beekmann S. The untold story of pyrocumulonimbus // Bull. Am. Meteor. Soc. 2010. V. 91. P. 1193–1209.
16. Fromm M.D., Servranckx R. Transport of forest fire smoke above the tropopause by supercell convection // Geophys. Res. Lett. 2003. V. 30, N 10. P. 1542.
17. Ельников А.В., Креков Г.М., Маричев В.Н. Лидарные наблюдения стратосферного слоя аэрозоля над Западной Сибирью // Изв. АН СССР. Сер. Физ. атмосф. и океана. 1988. Т. 24, № 8. С. 818–823; El'nikov A.V., Krekov G.M. Marichev V.N. Lidar observations of stratospheric aerosol layer above the western Siberia // Izv. Acad. Sci. USSR, Atmos. Ocean. Phys. 1988. V. 24, N 8. P. 818–823.
18. Stein A.F., Draxler R.R., Rolph G.D., Stunder B.J.B., Cohen M.D., Ngan F. NOAA's HYSPLIT atmospheric transport and dispersion modeling system // Bull. Am. Meteor. Soc. 2015. V. 96. P. 2059–2077.
19. URL: http://www.ready.arl.noaa.gov/HYSPLIT.php (last access: 10.12.2017).
20. Fromm M., Alfred J., Hoppel K., Hornstein J., Bevilacqua R., Shettle E., Servranckx R., Li Z., Stocks B. Observations of boreal forest fire smoke in the stratosphere by POAM III, SAGE II, and lidar in 1998 // Geophys. Res. Lett. 2000. V. 27, N 9. P. 1407–1410.
21. Fromm M., Bevilacqua R., Servranckx R., Rosen J., Thayer J.P., Herman J., Larko D. Pyro-cumulonimbus injection of smoke to the stratosphere: Observations and impact of a super blowup in northwestern Canada on 3–4 August 1998 // J. Geophys. Res. D. 2005. V. 110, N 8. P. D08205.
22. Fromm M., Tupper A., Rosenfeld D., Servranckx R., McRae R. Violent pyro-convective storm devastates Australia’s capital and pollutes the stratosphere // Geophys. Res. Lett. 2006. V. 33, N 5. P. L05815.
23. Fromm M., Torres O., Diner D., Lindsey D., Vant Hull B., Servranckx R., Shettle E.P., Li Z. Stratospheric impact of the Chisholm pyrocumulonimbus eruption: 1. Earth-viewing satellite perspective // J. Geophys. Res. D. 2008. V. 113, N 8. P. D08202.
24. Fromm M., Shettle E.P., Fricke K.H., Ritter C., Trickl T., Giehl H., Gerding M., Barnes J.E., O'Neill M., Massie S.T., Blum U., McDermid I.S., Leblanc T., Deshler T. Stratospheric impact of the Chisholm pyrocumulonimbus eruption: 2. Vertical profile perspective // J. Geophys. Res. D. 2008. V. 113, N 8. P. D08203.
25. Livesey N.J., Fromm M.D., Waters J.W., Manney G.L., Santee M.L., Read W.G. Enhancements in lower stratospheric CH3CN observed by the Upper Atmosphere Research Satellite Microwave Limb Sounder following boreal forest fires // J. Geophys. Res. D. 2004. V. 109, N 6. P. D06308.
26. Damoah R., Spichtinger N., Servranckx R., Fromm M., Eloranta E.W., Razenkov I.A., James P., Shulski M., Forster C., Stohl A. A case study of pyro-convection using transport model and remote sensing data // Atmos. Chem. Phys. 2006. V. 6, N 1. P. 173–185.
27. Cammas J.-P., Brioude J., Chaboureau J.-P., Duron J., Mari C., Mascart P., Nédélec P., Smit H., Pätz H.-W., Volz-Thomas A., Stohl A., Fromm M. Injection in the lower stratosphere of biomass fire emissions followed by long-range transport: A MOZAIC case study // Atmos. Chem. Phys. 2009. V. 9, N 15. P. 5829–5846.
28. Gonzi S., Palmer P.I. Vertical transport of surface fire emissions observed from space // J. Geophys. Res. D. 2010. V. 115, N 2. P. D02306.
29. Guan H., Esswein R., Lopez J., Bergstrom R., Warnock A., Follette-Cook M., Fromm M., Iraci L.T. A multi-decadal history of biomass burning plume heights identified using aerosol index measurements // Atmos. Chem. Phys. 2010. V. 10, N 14. P. 6461–6469.
30. Siddaway J.M., Petelina S.V. Transport and evolution of the 2009 Australian Black Saturday bushfire smoke in the lower stratosphere observed by OSIRIS on Odin // J. Geophys. Res. D. 2011. V. 116, N 6. P. D06203.
31. Dahlkötter F., Gysel M., Sauer D., Minikin A., Baumann R., Seifert P., Ansmann A., Fromm M., Voigt C., Weinzierl B. The Pagami Creek smoke plume after long-range transport to the upper troposphere over Europe – aerosol properties and black carbon mixing state // Atmos. Chem. Phys. 2014. V. 14, N 12. P. 6111–6137.
32. Paugam R., Wooster M., Freitas S., Val Martin M. A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models // Atmos. Chem. Phys. 2016. V. 16, N 2. P. 907–925.
33. Val Martin M., Logan J.A., Kahn R.A., Leung F.-Y., Nelson D.L., Diner D.J. Smoke injection heights from fires in North America: Analysis of 5 years of satellite observations // Atmos. Chem. Phys. 2010. V. 10, N 4. P. 1491–1510.
34. Nikonovas T., North P.R.J., Doerr S.H. Particulate emissions from large North American wildfires estimated using a new top-down method // Atmos. Chem. Phys. 2017. V. 17, N 10. P. 6423–6438.
35. Rémy S., Veira A., Paugam R., Sofiev M., Kaiser J.W., Marenco F., Burton S.P., Benedetti A., Engelen R.J., Ferrare R., Hair J.W. Two global data sets of daily fire emission injection heights since 2003 // Atmos. Chem. Phys. 2017. V. 17, N 4. P. 2921–2942.
36. Sofiev M., Vankevich R., Ermakova T., Hakkarainen J. Global mapping of maximum emission heights and resulting vertical profiles of wildfire emissions // Atmos. Chem. Phys. 2013. V. 13, N 14. P. 7039–7052.
37. Peterson D., Hyer E., Wang J. Quantifying the potential for high-altitude smoke injection in the North American boreal forest using the standard MODIS fire products and subpixel-based methods // J. Geophys. Res.: Atmos. 2014. V. 119, N 6. P. 3401–3419.
38. URL: http: // www.glossary.ametsoc.org / wiki / Pyrocumulonimbus (last access: 10.12.2017).
39. Zuev V.V., Burlakov V.D., Nevzorov A.V., Pravdin V.L., Savelieva E.S., Gerasimov V.V. 30-year lidar observations of the stratospheric aerosol layer state over Tomsk (Western Siberia, Russia) // Atmos. Chem. Phys. 2017. V. 17, N 4. P. 3067–3081.
40. Markowicz K.M., Chilinski M.T., Lisok J., Zawadzka O., Stachlewska I.S., Janicka L., Rozwadowska A., Makuch P., Pakszys P., Zielinski T., Petelski T., Posyniak M., Pietruczuk A., Szkop A., Westphal D.L. Study of aerosol optical properties during long-range transport of biomass burning from Canada to Central Europe in July 2013 // J. Aerosol Sci. 2016. V. 101. P. 156–173.
41. Ansmann A., Baars H., Chudnovsky A., Mattis I., Veselovskii I., Haarig M., Seifert P., Engelmann R., Wandinger U. Extreme levels of Canadian wildfire smoke in the stratosphere over central Europe on 21–22 August 2017 // Atmos. Chem. Phys. 2018. V. 18, N 16. P. 11831–11845.
42. URL: https://www.nasa.gov/content/goes (last access: 10.12.2017).
43. Carnuth W., Kempfer U., Trickl T. Highlights of the tropospheric lidar studies at IFU within the TOR project // Tellus B. 2002. V. 54, N 2. P. 163–185.
44. Ситнов С.А., Горчаков Г.И., Свириденков М.А., Горчакова И.А., Карпов А.В., Колесникова А.Б. Аэрокосмический мониторинг дымового аэрозоля на европейской части России в период массовых пожаров лесов и торфяников в июле – августе 2010 г. // Оптика атмосф. и океана. 2012. Т. 25, № 12. С. 1062–1076; Sitnov S.A., Gorchakov G.I., Sviridenkov M.A., Gorchakova I.A., Karpov A.V., Kolesnikova A.B. Aerospace monitoring of smoke aerosol over the European Part of Russia in the period of massive forest and Peatbog Fires in July–August of 2010 // Atmos. Ocean. Opt. 2013. V. 26, N 4. P. 265–280.
45. Суркова Г.В., Блинов Д.В., Кирсанов А.А., Ревокатова А.П., Ривин Г.С. Моделирование распространения шлейфов воздушных загрязнений от очагов лесных пожаров с использованием химико-транспортной модели COSMO-Ru7-ART // Оптика атмосф. и океана. 2014. Т. 27, № 1. С. 75–81; Surkova G.V., Blinov D.V., Kirsanov A.A., Revokatova A.P., Rivin G.S. Simulation of spread of air pollution plumes from forest fires with the use of COSMO-Ru7-ART chemical-transport model // Atmos. Ocean. Opt. 2014. V. 27, N 3. P. 268–274.
46. Томшин О.А., Соловьев В.С. Исследование крупномасштабных неоднородностей аэрозольных полей, вызванных лесными пожарами в Сибири // Оптика атмосф. и океана. 2016. Т. 29, № 7. С. 598–602.
47. Балин Ю.С., Клемашева М.Г., Коханенко Г.П., Насонов С.В., Новоселов М.М., Пеннер И.Э. Лидарные исследования вертикальной структуры аэрозольных полей атмосферы над озером Байкал в период лесных пожаров // Оптика атмосф. и океана. 2016. Т. 29, № 8. С. 689–693.