Том 30, номер 04, статья № 12

Федотов Ю. В., Булло О. А., Белов М. Л., Городничев В. А. Выбор спектральных диапазонов для лазерного флуоресцентного метода обнаружения стрессовых состояний растений. // Оптика атмосферы и океана. 2017. Т. 30. № 04. С. 350–353. DOI: 10.15372/AOO20170412.    PDF
Скопировать ссылку в буфер обмена

Аннотация:

Рассмотрен лазерный флуоресцентный метод обнаружения стрессовых состояний растений. Для длины волны возбуждения флуоресценции 532 нм приведены результаты обработки экспериментальных спектров флуоресценции растений в нормальном и стрессовых состояниях, вызванных различными факторами. Проведен сравнительный анализ вариантов спектральных диапазонов регистрации флуоресцентного излучения растений. Показано, что для задачи мониторинга растительности наилучшими с точки зрения надежности обнаружения стрессовых состояний растений являются спектральные диапазоны с центральными длинами волн 685 и 740 нм.

Ключевые слова:

лазерный флуоресцентный метод, обнаружение стрессовых состояний растений, спектральные диапазоны

Список литературы:


1. Panneton B., Guillaume S., Roger J.M., Samson G. Discrimination of corn from monocotyledonous weeds with ultraviolet (UV) induced fluorescence // Appl. Spectrosc. 2011. V. 65, N 1. Р. 10–19.
2. Gouveia-Neto A.S., da Silva E.A., Oliveira R.A., Cunha P.C., Costa E.B., Câmara T.J.R., Willadino L.C. Water deficit and salt stress diagnosis through LED induced chlorophyll fluorescence analysis in Jatropha curcas L. oil plants for biodisiel // Proc. SPIE. 2011. V. 7902. Р. 79020А-1–79020А-10.
3. Афонасенко А.В., Иглакова А.И., Матвиенко Г.Г., Ошлаков В.К., Прокопьев В.Е. Лабораторные и лидарные измерения спектральных характеристик листьев березы в различные периоды вегетации // Оптика атмосф. и океана. 2012. Т. 25, № 3. С. 237–243.
4. Федотов Ю.В., Булло О.А., Белов М.Л., Городничев В.А. Устойчивость результатов лазерного флуоресцентного метода контроля состояния растений // Оптика атмосф. и океана. 2016. Т. 29, № 1. С. 80–84.
5. Zhi-qiang C., Wen-li C. Effects of NaCl on photosynthesis in Arabidopsis and Thellungiella leaves based on the fluorescence spectra, the fast Chlorophyll Fluorescence Induction Dynamics Analysis and the delayed fluorescence technique // Proc. SPIE. 2010. V. 7568. Р. 756822-1–756822-8.
6. Gouveia-Neto A.S., da Silva E.A., Cunha P.C., Oliveira-Filho R.A., Silva L.M.H., da Costa E.B., Câmara T.J.R., Willadino L.G. Plant abiotic stress diagnostic by laser induced chlorophyll fluorescence spectral analysis of in vivo leaf tissue of biofuel species // Proc. SPIE. 2010. V.  7568. Р. 75680G-1–75680G-8.
7. Grishaev M.V., Sal’nikova N.S. A setup for remote recording of the spectrum of laser-induced fluorescence from crowns of woody plants // Instrum. Exp. Tech. 2010. V. 53, N 5. P. 746–749.
8. Yanga J., Gonga W., Shia S., Dua L., Suna J., Songe S. Laser-induced fluorescence characteristics of vegetation by a new excitation wavelength // Spectrosc. Lett. 2016. V. 49, N 4, P. 263–267.
9. Agati G., Biagi C., Mazzinghi P. Detection of the in vivo chlorophyll fluorescence spectrum: Effects of environmental factors and laser excitation parameters // Proc. SPIE. 1997. V. 3107. Р. 33–39.
10. Saito K. Plant and vegetation monitoring using laser-induced fluorescence spectroscopy / T. Fukuchi, T. Shiina (eds.) // Industrial Applications of Laser Remote Sens. 2012. P. 99–114.
11. Pandey J.K., Gopal R. Laser-induced chlorophyll fluorescence and reflectance spectroscopy of cadmium treated Triticum aestivum L. plants // Spectrosc. 2011. V. 26, N 2. P. 129–139.
12. Pandey J.K., Gopal R. Laser-induced chlorophyll fluorescence: A technique for detection of dimethoate effect on chlorophyll content and photosynthetic activity of wheat plant // J. Fluoresc. 2011. V. 21, N 2. P. 785–791.
13. Matvienko G., Timofeev V., Grishin A., Fateyeva N. Fluorescence lidar method for remote monitoring of effects on vegetation // Proc. SPIE. 2006. V. 6367. Р. 63670F-1–63670F-8.
14. Фатеева Н.Л., Климкин А.В., Бендер О.В., Зотикова А.П., Ямбургов М.С. Исследование лазерно-индуцированной флуоресценции хвойных и лиственных растений при азотном загрязнении почвы // Оптика атмосф. и океана. 2006. Т. 19, № 2–3. С. 212–215.
15. Middleton E., McMurtrey J.E., Entcheva Campbell P.K., Corp L.A., Butchera L.M., Chappellea E.W. Optical and fluorescence properties of corn leaves from different nitrogen regimes // Proc. SPIE. 2003. V. 4879. Р. 72–83.
16. Belasque J., Gasparoto M.C.G., Marcassa L.J. Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy // Appl. Opt. 2008. V. 47, N 11. Р. 1922–1926.
17. Gopal R., Mishra K.B., Zeeshan M., Prasad S.M., Jo-shi M.M. Laser-induced chlorophyll fluorescence spectra of mung plants growing under nickel stress // Curr. Sci. 2002. V. 83, N 7. Р. 880–884.
18. Cervantes-Martnez J., Flores-Hernandez R., Rodriguez-Garay B., Santacruz-Ruvalcaba F. Detection of bacterial infection of agave plants by laser-induced fluorescence // Appl. Opt. 2002. V. 41, N 13. Р. 2541–2545.
19. Rinderle U., Lichtenthaler H.K. The chlorophyll fluorescence ratio F690/F735 as a possible indicator. Applications of chlorophyll fluorescence. London: Kluwer Academic Publishers, 1988. P. 189–196.
20. Sandhu R.K., Kim M.S., Krizek D.T., Middleton E.M. Fluorescence imaging and chlorophyll fluorescence to evaluate the role of EDU in UV-B protection in cucumber // Proc. SPIE. 1997. V. 3059. Р. 42–51.