Том 29, номер 01, статья № 5

Коношонкин А. В., Кустова Н. В., Шишко В. А., Боровой А. Г. Методика решения задачи рассеяния света на ледяных кристаллах перистых облаков в направлении рассеяния назад методом физической оптики для лидара с зенитным сканированием. // Оптика атмосферы и океана. 2016. Т. 29. № 01. С. 40-50. DOI: 10.15372/AOO20160105.    PDF
Скопировать ссылку в буфер обмена

Аннотация:

Рассмотрена методика решения задачи рассеяния света в направлении рассеяния назад методом физической оптики. Даются рекомендации по проведению предварительной оценки вклада геометрооптических пучков, позволяющей сократить список необходимых для расчета пучков в сотни раз. Представленные эмпирические оценочные формулы и рекомендации по выбору оптимального шага численного интегрирования позволяют значительно снизить ресурсоемкость метода физической оптики для указанных микрофизических моделей гексагональных кристаллических частиц. Полученные результаты решения задачи рассеяния света доступны в виде банка данных матриц Мюллера в свободном доступе.

Ключевые слова:

физическая оптика, алгоритм трассировки пучков, рассеяние света, ледяные кристаллы

Список литературы:


1. Самохвалов И.В., Кауль Б.В., Насонов С.В., Животенюк И.В., Брюханов И.Д. Матрица обратного рассеяния света зеркально отражающих слоев облаков верхнего яруса, образованных кристаллическими частицами, преимущественно ориентированными в горизонтальной плоскости // Оптика атмосф. и океана. 2012. Т. 25, № 5. С. 403–411.
2. Балин Ю.С., Кауль Б.В., Коханенко Г.П. Наблюдения зеркально отражающих частиц и слоев в кристаллических облаках // Оптика атмосф. и океана. 2011. Т. 24, № 4. С. 293–299.
3. Кауль Б.В., Волков С.Н., Самохвалов И.В. Результаты исследований кристаллических облаков посредством лидарных измерений матриц обратного рассеяния света // Оптика атмосф. и океана. 2003. Т. 16, № 4. С. 354–361.
4. Borovoi A., Balin Y., Kokhanenko G., Penner I., Konoshonkin A., Kustova N. Layers of quasi-horizontally oriented ice crystals in cirrus clouds observed by a two-wavelength polarization lidar // Opt. Exp. 2014. V. 22, N 20. P. 24566–24573.
5. Sassen K., Benson S. A midlatitude cirrus cloud climatology from the Facility for Atmospheric Remote Sensing: II. Microphysical properties derived from lidar depolarization // J. Atmos. Sci. 2001. V. 58, N 15. P. 2103–2112.
6. Cho H.M., Yang P., Kattawar G.W., Nasiri S.L., Hu Y., Minnis P., Trepte C., Winker D. Depolarization ratio and attenuated backscatter for nine cloud types: Analyses based on collocated CALIPSO lidar and MODIS measurements // Opt. Exp. 2014. V. 16, N 6. P. 3931–3948.
7. Noel V., Chepfer H., Ledanois G., Delaval A., Flamant P.H. Classification of particle effective shape ratios in cirrus clouds based on the lidar depolarization ratio // Appl. Opt. 2002. V. 41, N 21. P. 4245–4257.
8. Liou K.N. Influence of cirrus clouds on weather and climate processes: A global perspective // Mon. Wea. Rev. 1986. V. 114, N 6. P. 1167–1199.
9. Liu C., Panetta R.L., Yang P. Application of the pseudo-spectral time domain method to compute particle single-scattering properties for size parameters up to 200 // J. Quant. Spectrosc. Radiat. Transfer. 2012. V. 113, N 13. P. 1728–1740.
10. Bi L., Yang P., Kattawar G.W., Baum B.A., Hu Y.X., Winker D.M., Brock R.S., Lu J.Q. Simulation of the color ratio associated with the backscattering of radiation by ice particles at the wavelengths of 0.532 and 1.064 mm // J. Geophys. Res. 2009. V. 114. P. D00H08.
11. Takano Y., Liou K.N. Solar radiative transfer in cirrus clouds. Part I. Singlescattering and optical properties of hexagonal ice crystals // J. Atmos. Sci. 1989. V. 46, N 1. P. 3–19.
12. Коношонкин А.В., Боровой А.Г. Зеркальное рассеяние света на ледяных кристаллах облаков и взволнованной поверхности воды // Оптика атмосф. и океана. 2013. Т. 26, № 1. С. 64–69.
13. Коношонкин А.В., Кустова Н.В., Боровой А.Г. Граница применимости приближения геометрической оптики для решения задачи обратного рассеяния света на квазигоризонтально ориентированных гексагональных ледяных пластинках // Оптика атмосф. и океана. 2014. Т. 27, № 8. С. 705–712.
14. Borovoi A., Konoshonkin A., Kustova N. The physical-optics approximation and its application to light backscattering by hexagonal ice crystals // J. Quant. Spectrosc. Radiat. Transfer. 2014. V. 146. P. 181–189.
15. Коношонкин А.В., Кустова Н.В., Осипов В.А., Боровой А.Г., Masuda К., Ishimoto H., Okamoto H. Метод физической оптики для решения задачи рассеяния света на кристаллических ледяных частицах: сравнение дифракционных формул // Оптика атмосф. и океана. 2015. Т. 28, № 9. С. 830–843.
16. Bi L., Yang P., Kattawar G.W., Hu Y., Baum B.A. Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method // J. Quant. Spectrosc. Radiat. Transfer. 2011. V. 112, N 9. P. 1492–508.
17. Коношонкин А.В., Кустова Н.В., Боровой А.Г. Особенности в деполяризационном отношении лидарных сигналов для хаотически ориентированных ледяных кристаллов перистых облаков // Оптика атмосф. и океана. 2013. Т. 26, № 5. С. 385–387.
18. Borovoi A., Konoshonkin A., Kustova N., Okamoto H. Backscattering Mueller matrix for quasihorizontally oriented ice plates of cirrus clouds: Application to CALIPSO signals // Opt. Exp. 2012. V. 20, N 27. P. 28222–28233.
19. Borovoi A., Konoshonkin A., Kustova N. Backscatter ratios for arbitrary oriented hexagonal ice crystals of cirrus clouds // Opt. Lett. 2014. V. 39, N 19. P. 5788–5791.
20. Коношонкин А.В., Кустова Н.В., Боровой А.Г. Алгоритм трассировки пучков для задачи рассеяния света на атмосферных ледяных кристаллах. Часть 1. Теоретические основы алгоритма // Оптика атмосф. и океана. 2015. Т. 28, № 4. С. 324–330.
21. Коношонкин А.В., Кустова Н.В., Боровой А.Г. Алгоритм трассировки пучков для задачи рассеяния света на атмосферных ледяных кристаллах. Часть 2. Сравнение с алгоритмом трассировки лучей // Оптика атмосф. и океана. 2015. Т. 28, № 4. С. 331–337.
22. Mitchell D.L. A model predicting the evolution of ice particle size spectra and radiative properties of cirrus clouds. Part 1. Microphysics // J. Atmos. Sci. 1994. V. 51, N 6. P. 797–816.
23. Auer A.H., Veal D.L. The dimension of ice crystals in natural clouds // J. Atmos. Sci. 1970. V. 27, N 6. P. 919–926.
24. Sato K., Okamoto H. Characterization of Z(e) and LDR of nonspherical and inhomogeneous ice particles for 95-GHz cloud radar: Its implication to microphysical retrievals // J. Geophys. Res. 2006. V. 111. Р. D22213.
25. Heymsfield A.J., Miloshevich L.M. Parameterizations for the Cross-Sectional Area and Extinction of Cirrus and Stratiform Ice Cloud Particles // J. Atmos. Sci. 2003. V. 60, N 7. P. 936–956.
26. Heymsfield A.J., Bansemer A., Field P.R., Durden S.L., Stith J., Dye J.E., Hall W. Observations and parameterizations of particle size distributions in deep tropical cirrus and stratiform precipitating clouds: Results from in situ observations in TRMM field campaigns // J. Atmos. Sci. 2002. V. 59, N 24. P. 3457– 3491.
27. Самохвалов И.В., Насонов С.В., Брюханов И.Д., Боровой А.Г., Кауль Б.В., Кустова Н.В., Коношонкин А.В. Анализ матрицы обратного рассеяния перистых облаков с аномальным обратным рассеянием // Изв. вузов. Физ. 2013. № 8/3. С. 281–283.
28. Кауль Б.В., Самохвалов И.В. Ориентация частиц кристаллических облаков Ci: Часть 1. Ориентация при падении // Оптика атмосф. и океана. 2005. Т. 18, № 11. С. 963–967.
29. Кауль Б.В., Самохвалов И.В. Ориентация частиц в кристаллических облаках Ci: Часть 2. Азимутальная ориентация // Оптика атмосф. и океана. 2006. Т. 19, № 1. С. 44–46.
30. Кауль Б.В., Самохвалов И.В. Физические факторы, определяющие пространственную ориентацию частиц кристаллических облаков // Оптика атмосф. и океана. 2008. Т. 21, № 1. С. 27–34.
31. Konoshonkin A., Kustova N., Borovoi A. Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 164. P. 175–183.
32. Borovoi A., Konoshonkin A., Kustova N. Backscattering reciprocity for large particles // Opt. Lett. 2013. V. 38, N 9. P. 1485–1487.
33. Borovoi A., Konoshonkin A., Kustova N. Backscattering by hexagonal ice crystals of cirrus clouds // Opt. Lett. 2013. V. 38, N 15. P. 2881–1884.
34. Borovoi A., Kustova N., Konoshonkin A. Interference phenomena at backscattering by ice crystals of cirrus clouds // Opt. Exp. 2015. V. 23, N 19. P. 24557–24571.
35. URL: ftp://ftp.iao.ru/pub/GWDT/Physical_optics/ Backscattering/