Том 27, номер 05, статья № 3
Скопировать ссылку в буфер обмена
Аннотация:
С помощью Фурье-спектрометра IFS 125 HR в области 5000–5600 см–1 выполнены исследования уширения и сдвига линий поглощения водяного пара, находящегося внутри нанопор аэрогеля. Показано, что сильное пространственное ограничение движения молекул приводит к значительному уширению и сдвигу спектральных линий.
Впервые представлена полуэмперическая модель для описания формы контура линий поглощения молекул H2O, находящихся внутри нанопор аэрогеля, учитывающая зависимость полуширин от вращательных квантовых чисел. Значения полуширин спектральных линий, полученные экспериментально и теоретически, находятся в хорошем согласии.
Ключевые слова:
водяной пар, уширение спектральных линий, аэрогель, нанопоры
Список литературы:
1. Henderson M.A. The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited // Surface Sci. Reports. 2002. V. 46, iss. 1–8. P. 5–308.
2. Ohba T., Kaneko K. Cluster-associated filling of water molecules in slit-shaped graphitic nanopores // Mol. Phys. 2007. V. 105, iss. 2–3. P. 139–145.
3. Raghunathan A.V., Aluru N.R. An empirical potential based quasicontinuum theory for structural prediction of water // J. Chem. Phys. 2009. V. 131, iss. 18. P. 184703-1–184703-7.
4. Mosaddeghi H., Alavi S., Kowsari M.H., Najafi B. Simulations of structural and dynamic anisotropy in nano-confined water between parallel graphite plates // J. Chem. Phys. 2012. V. 137, iss. 18. P. 184703-1–184703-10.
5. Rasaiah J.C., Garde S., Hummer G. Water in nonpolar confinement: from nanotubes to proteins and beyond // Annu. Rev. Phys. Chem. 2008. V. 59, iss. 1. P. 713–740.
6. Coudert F.-X., Vuilleumier R., Boutin A. Dipole moment, hydrogen bonding and IR spectrum of confined water // Chem. Phys. Chem. 2006. V. 7, iss. 12. P. 2464–2467.
7. Kocherbitov V. Properties of Water Confined in an Amphiphilic Nanopore // J. Phys. Chem. C. 2008. V. 112, iss. 43. P. 16893–16897.
8. Литтл Л. Инфракрасные спектры адсорбированных молекул. М.: Мир, 1969. 516 с.
9. Киселев А.В., Лыгин В.И. Инфракрасные спектры поверхностных соединений. М.: Наука, 1972. 459 с.
10. Уиллис Р. Физика поверхности: колебательная спектроскопия адсорбентов / Под ред. Р. Уиллиса. М.: Мир, 1984. 247 с.
11. Svensson T., Lewander M., Svanberg S. Laser absorption spectroscopy of water vapor confined in nanoporous alumina: wall collision line broadening and gas diffusion dynamics // Opt. Express. 2010. V. 18, iss. 16. P. 16460–16473.
12. Ponomarev Yu.N., Petrova T.M., Solodov A.M., Solodov A.A. IR spectroscopy of water vapor confined in nanoporous silica aerogel // Opt. Express. 2010. V. 18, iss. 25. P. 26062–26067.
13. Perez-Hernandez N., Luong T.Q., Perez C., Martin J.D., Havenith M. Pore size dependent dynamics of confined water probed by FIR spectroscopy // Phys. Chem. Chem. Phys. 2010. V. 12, iss. 26. P. 6928–6932.
14. Xu C.T., Lewander M., Andersson-Engels S., Adolfs-son E., Svensson T., Svanberg S. Wall-collision line broadening of molecular oxygen within nanoporous materials // Phys. Rev. A. 2011. V. 84, iss. 4. P. 042705-1– 042705-4.
15. Hartmann J.-M., Sironneau V., Boulet C., Svensson T., Hodges J.T., Xu C.T. Collisional broadening and spectral shapes of absorption lines of free and nanopore-confined O2 gas // Phys. Rev. A. 2013. V. 87, iss. 3. P. 032510-1–032510-10.
16. Fano U. Pressure broadening as a prototype of relaxation // Phys. Rev. 1963. V. 131, iss. 1. P. 259–268.
17. Buldyreva J., Lavrenteva N., Starikov V. Collisional Line Broadening and Shifting of Atmospheric Gases. A practical Guide for Line Shape Modeling by Current Semi-Classical Approaches. London: Imperical College Press, 2010. 304 p.
18. Ptashnik I.V., Smith K.M., Shine K.P. Self-Broadened Line Parameters for Water Vapour in the Spectral Region 5000–5600 cm–1 // J. Mol. Spectrosc. 2005. V. 232, iss. 2. P. 186–201.
19. Olivero J.J., Longbothum R.L. Empirical fits to the Voigt line width: A brief review // J. Quant. Spectrosc. Radiat. Transfer. 1977. V. 17, iss. 2. P. 233–236.
20. Tsao C.J., Curnutte B. Line-widths of pressure-broadened spectral lines // J. Quant. Spectrosc. Radiat. Transfer. 1962. V. 2, iss. 1. P. 41–91.
21. Townes C.H., Schawlow A.L. Microwave Spectroscopy. New York; London; Toronto: McGraw-Hill Book Company, 1955. 698 p.
22. Wagner P.E., Somers R.M., Jenkins J.L. Line Broa-dening and Relaxation of Three Microwave Transitions in Ammonia by Wall and Intermolecular Collisions // J. Phys. B. 1981. V. 14, iss. 24. P. 4763–4770.
23. Luijendijk S.C.M. The Effect of Wall Collisions on the Shape of Microwave Absorption Lines // J. Phys. B. 1975. V. 8, iss. 18. P. 2995–3000.
24. Coy S.L. Speed Dependence of Microwave Rotational Relaxation Rates // J. Chem. Phys. 1980. V. 73, iss. 11. P. 5531–5555.
25. Robert D., Bonamy J. Short range force effects in semiclassical molecular line broadening calculations // J. de Physique. 1979. V. 40, N 10. P. 923–943.
26. Leavitt R.P. Pressure broadening and shifting in microwave and infrared spectra of molecules of arbitrary symmetry: An irreducible tensor approach // J. Chem. Phys. 1980. V. 73, N 11. P. 5432–5450.
27. Starikov V.I. Calculation of the self-broadening coefficients of water vapor absorption lines using an exact trajectory model // Opt. Spectrosc. 2008. V. 104, N 4. P. 513–523.
28. Hammaker R.M., Francis S.A., Eischens R.P. Infrared study of intermolecular interactions for carbon monoxide chemisorbed on platinum // Spectrochim. Acta. 1965. V. 21, N 7. P. 1295–1309.
29. Crossley A., King D.A. Infrared spectra for co isotopes chemisorbed on Pt «111»: Evidence for strong absorbate coupling interactions // Surface Sci. 1977. V. 68. P. 528–538.
30. Mahan G.D., Lucas A.A. Collective vibrational modes of adsorbed CO // J. Chem. Phys. 1978. V. 68, N 4. P. 1344–1348.
31. Scheeffler M. The influence of lateral interactions on the vibrational spectrum of adsorbed CO // Surface Sci. 1979. V. 81, N 2. P. 562–570.
32. Svensson T., Adolfsson E., Burresi M., Savo R., Xu C.T., Wiersma D.S., Svanberg S. Pore size assessment based on wall collision broadening of spectral lines of confined gas: experiments on strongly scattering nanoporous ceramics with fine-tuned pore sizes // Appl. Phys. B. 2013. V. 110, N 2. P. 147–154.