Том 25, номер 04, статья № 3

Пригарин С. М., Базаров К. Б., Оппель У. Г. Looking for a glory in A-water clouds. // Оптика атмосферы и океана. 2012. Т. 25. № 04. С. 307-313.    PDF
Скопировать ссылку в буфер обмена

Аннотация:

In this paper we discuss a hypothesis proposed by Anatoly N. Nevzorov that considerable amount of water in cold clouds can exist in a specific phase state with the refractive index ≈1.8 and density higher than 2 g/cm3 (so called A-water). One of the arguments mentioned in favor of this hypothesis is that the glory phenomenon can be better explained by existence of A-water. In our paper we consider this argument in detail studying the phase functions of A-water clouds for different distributions of droplet size.

Список литературы:

1. F. Franks (Ed.), Water and Aqueous Solutions at Subzero Temperature, Plenum Press, New York, 1982.
2. A.N. Nevzorov, Some properties of metastable states of water, Physics of Wave Phenomena. Vol. 14, No. 1. P. 45-57 (2006).
3. A.N. Nevzorov, Permanence, properties and nature of liquid phase in ice-containing clouds. 11th Int. Conf. on Clouds and Precipitation, 1992, Montreal, Canada. P. 270 273.
4. A.N. Nevzorov, Investigations in physics of liquid phase in ice-containing clouds, Meteorologiya i Gidrologiya, Vol. 18, No. 9. P. 55-68 (1993) [in Russian].
The same reference in Russian:Невзоров А.Н. Исследования по физике жидкой фазы в льдосодержащих облаках // Метеорол. и гидрол. 1993. № 1. С. 55 68.
5. A.N. Nevzorov, Cloud phase composition and phase evolution as deduced from experimental evidence and physico-chemical concepts, 13th Int. Conf. on Clouds and Precipitation, Reno, Nevada, USA. P. 728-731 (2000).
6. A.N. Nevzorov, Internal Mechanism of Metastable Liquid Water Crystallization and Its Effects on Intracloud Processes, Izvestiya RAN, Atmos. and Ocean Phys. Vol. 42, No. 6. P. 765-772 (2006).
The same reference in Russian: Невзоров А.Н. О внутреннем механизме кристаллизации метастабильной жидкой воды и об его эффектах, влияющих на внутриоблачные процессы // Изв. РАН. Физ. атмосф. и океана. 2006. Т. 42, № 6. С. 830-838.
7. A.N. Nevzorov, Bimorphism and properties of liquid water in cold clouds, In: Some problems of cloud physics, Meteorologiya i Gidrologiya, Moscow, 2008. P. 268-298 [in Russian].
The same reference in Russian: Невзоров А.Н. Биморфизм и свойства жидкокапельной воды в холодных облаках // Вопросы физики облаков. М.: Метеорология и гидрология, 2008. С. 268-298.
8. A.N. Nevzorov, Glory phenomenon and a nature of liquid-drop fraction in cold clouds, Atmospheric and Oceanic Optics. V. 20, No. 8. P. 613-619 (2007).
9. A.N. Nevzorov, On the theory and physics of glory formation, Atmospheric and Oceanic Optics. Vol. 24, No. 4. P. 344-348 (2011).
10. B. Mayer, C. Emde, Comment on "Glory phenomenon informs of presence and phase state of liquid water in clouds" by Anatoly N. Nevzorov, Atmospheric Research. Vol. 84. P. 410-419 (2007).
11. B. Mayer, M. Schroder, R. Preusker, and L. Shuller, Remote sensing of water cloud droplet size distribution using the backscattering glory: a case study. Atmos. Chem. Phys. Vol. 4. P. 1255-1263 (2004).
12. P. Laven, Simulation of rainbows, coronas, and glories by use of Mie theory, Appl. Opt. Vol. 42, No. 3. P. 436-444 (2003).
13. P. Laven, How are glories formed? Appl. Opt. Vol. 44, No. 27. P. 5675-5683 (2005).
14. N.P. Romanov, S.O. Dubnichenko, Physics of formation and analytical description of glory properties. Atmospheric and Oceanic Optics, Vol. 23, No. 7, P. 549-560 (2010).
15. W. Wiscombe, Improved Mie scattering algorithms, Appl. Opt., Vol. 19, No. 9. P. 1505-1509 (1980).
16. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions, American Elsevier, New York, 1969, 290 pp.
17. M. Hess, P. Koepke, and I. Schult, Optical properties of aerosols and clouds: the software package OPAC, Bull. Amer. Meteor. Soc. Vol. 79. P. 831-844 (1998).
18. A. Berk, L.S. Bernstein, G.P. Anderson, P.K. Acharya, D.C. Robertson, J.H. Chetwynd, and S.M. Adler-Golden, MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS, Remote Sens. Environ. Vol. 65. P. 367-375 (1998).
19. E.P. Shettle and R.W. Fenn, Models for the Aerosols for the Lower Atmosphere and the Effects of Humidity Variations on Their Optical Properties. AFGL-TR-79-0214 Environmental Research Papers. No. 676. 1979.
20. P.V. Dyachenko, Experimental Application of the Method of Mathematical Statistics to Microstructural Fog and Cloud Research, Voeikov Main Geophys. Obser. 1962.
21. B.A. Silverman and E.D. Sprague, Airborne measurement of in-cloud visibility, Preprints, Second National Conf. on Weather Modification, Santa Barbara, CA, Amer. Meteor. Soc. P. 271-276 (1970).
22. L.W. Abreu and G.P. Anderson, The MODTRAN 2/3 Report and LOWTRAN 7 Model, Prepared by Ontar Corporation for PL/GPOS. 1996.
23. D. Segelstein, The Complex Refractive Index of Water, M.S. Thesis, University of Missouri, Kansas City, 1981.
24. S.M. Prigarin, A.G. Borovoi, U. Oppel, Halos and multiple scattering in crystal clouds (results of Monte Carlo simulation), Proceedings of XVI Int. Sympos. "Atmospheric and Ocean Optics. Atmospheric Physics" (Tomsk, October 12-15, 2009). Tomsk: Institute of Atmospheric Optics, 2009. P. 374-377.
25. S.M. Prigarin, Numerical simulation of halo in crystal clouds by Monte Carlo method, Russian J. Numer. Anal. Math. Modelling (2009). Vol. 24, No. 5. P. 481-494.