Том 24, номер 06, статья № 1

Shine K. P., Highwood E. J., Radel G., Stuber N., Balkanski Y. Сlimate model calculations of the impact of aerosols from road transport and shipping. // Оптика атмосферы и океана. 2011. Т. 24. № 06. С. 444-451.    PDF
Скопировать ссылку в буфер обмена

Аннотация:

Road transport and shipping are copious sources of aerosols, which exert a significant radiative forcing, compared to, for example, the CO2 emitted by these sectors. An advanced atmospheric general circulation model, coupled to a mixed-layer ocean, is used to calculate the climate response to the direct radiative forcing from such aerosols. The cases considered include imposed distributions of black carbon and sulphate aerosols from road transport, and sulphate aerosols from shipping; these are compared to the climate response due to CO2 increases. The difficulties in calculating the climate response due to small forcings are discussed, as the actual forcings have to be scaled by large amounts to enable a climate response to be easily detected. Despite the much greater geographical inhomogeneity in the sulphate forcing, the patterns of zonal and annual-mean surface temperature response (although opposite in sign) closely resembles that resulting from homogeneous changes in CO2. The surface temperature response to black carbon aerosols from road transport is shown to be notably non-linear in scaling applied, probably due to the semi-direct response of clouds to these aerosols. For the aerosol forcings considered here, the most widespread method of calculating radiative forcing significantly overestimates their effect, relative to CO2, compared to surface temperature changes calculated using the climate model.

Ключевые слова:

radiative forcing, climate change, black carbon, transport emissions

Список литературы:

1. Eyring V., Isaksen I.S.A., Berntsen T., Collins W.J., Corbett J.J., Endresen O., Grainger R.G., Moldanova J., Schlager H., and Stevenson D.S., "Transport impacts on atmosphere and climate: shipping," Atmos. Environ., 44, 4735-4771 (2010).
2. Lee D.S., Pitari G., Grewe V., Gierens K., Penner J.E., Petzold A., Prather M.J., Schumann U., Bais A., Berntsen T., Iachetti D., Lim L.L., and Sausen R., "Transport impacts on atmosphere and climate: aviation," Atmos. Environ., 44, 4678-4734 (2010).
3. Uherek E., Halenka T., Borken-Kleefeld J., Balkanski Y., Berntsen T., Borrego C., Gauss M., Hoor P., Juda-Rezler K., Lelieveld J., Melas D., Rypdal K., Schmid S., "Transport impacts on atmosphere and climate: land transport," Atmos. Environ., 44, 4772-4816 (2010).
4. Balkanski Y., Myhre G., Gauss M., Radel G., Highwood E.J., and Shine K.P., "Direct radiative effect of aerosols emitted by transport: from road, shipping and aviation," Atmos. Chem. Phys., 10, 4477-4489 (2010).
5. Cook J. and Highwood E.J., "Climate response to tropospheric aerosols in an Intermediate General Circulation Model," Q. J. R. Meteorol. Soc., 130, 175-191 (2004).
6. Hansen J., Sato M., Ruedy R., Nazarenko L., Lacis A., Schmidt G.A., Russell G., Aleinov I., Bauer M., Bauer S., Bell N., Cairns B., Canuto V., Chandler M., Cheng Y., Del Genio A., Faluvegi G., Fleming E., Friend A., Hall T., Jackman C., Kelley M., Kiang N.Y., Koch D., Lean J., Lerner J., Lo K., Menon S., Miller R.L., Minnis P., Novakov T., Oinas V., Perlwitz Ja., Perlwitz Ju., Rind D., Romanou A., Shindell D., Stone P., Sun S., Tausnev N., Thresher D., Wielicki B., Wong T., Yao M., and Zhan S., "Efficacy of climate forcings," J. Geophys. Res., 110, D18104 (2005).
7. Rind D., Lonergan P., and Shah K., "Climatic effect of water vapor release in the upper troposphere," J. Geophys. Res., 101, 29395-29405, doi: 10.1029/96JD02747 (1996).
8. Ponater M., Marquart S., Sausen R., and Schumann U., "On contrail climate sensitivity," Geophy. Res. Lett., 32, L10706 (2005).
9. Ponater M., Dietmuller S., Stuber N., Shine K.P., Highwood E.J., and Radel G., "Indications of distinctive efficacies for transport related ozone perturbations," Pp. 95-101 in Proc. of the 2nd International Conference on Transport, Atmosphere and Climate (Eds. R. Sausen, P.F.J. van Velthoven, C. Bruning, A. Blum) Forschungbericht 2010-10, Deutches Zentrum fur Luft und Raumfurht, Munich (http://www.pa.op.dlr.de/tac/2009/proceedings.html) (2010).
10. Williams K.D., Senior C.A., and Mitchell J.F.B., "Transient climate change in the Hadley Centre models: The role of physical processes," J. Climate, 14, 2659-2674 (2001).
11. Gordon C., Cooper C., Senior C.A., Banks H., Gregory J.M., Johns T.C., Mitchell J.F.B., and Wood R.A., "The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments," Clim. Dyn., 16, 147-168 (2000).
12. Pope V.D., Gallani M.L., Rowntree P.R., and Stratton R.A., "The impact of new physical parametrizations in the Hadley Centre climate model: HadAM3," Clim. Dyn., 16, 123-146 (2000).
13. Smith R.N.B., "A scheme for predicting layer clouds and their water content in a general circulation model," Q. J. R. Meteorol. Soc., 116, 435-460 (1990).
14. Gregory D. and Morris D., "The sensitivity of climate simulations to the specification of mixed phase clouds," Clim. Dyn., 12, 641-651 (1996).
15. Edwards J.M. and Slingo A., "Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model," Q. J. R. Meteorol. Soc., 122, 689-719 (1996).
16. Shine K.P., Cook J., Highwood E.J., and Joshi M.M., "Alternative to radiative forcing for estimating the relative importance of climate change mechanisms," Geophys. Res. Lett., 30, 2047 (2003).
17. Gregory J.M., Ingram W.J., Palmer M.A., Jones G.S., Stott P.A., Thorpe R.B., Lowe J.A., Johns T.C., and Williams K.D., "A new method for diagnosing radiative forcing and climate sensitivity," Geophys. Res. Lett., 31, L03205 (2004).
18. Gregory J. and Webb M., "Tropospheric adjustment induces a cloud component in CO2 forcing," J. Climate, 2, 58-71 (2008).
19. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M., and Van Dorland R., Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller, pp. 129-234, Cambridge Univ. Press, Cambridge, UK and New York, USA (2007).
20. Penner J.E., Zhang S.Y., and Chuang C.C., "Soot and smoke aerosol may not warm climate," J. Geophys. Res., 108, 4657 (2003).
21. Haywood J. M. and Ramaswamy V., "Global sensitivity studies of the direct radiative forcing due to anthropogenic sulphate and black carbon aerosols," J. Geophys. Res., 103(D6), 6043-6058 (1998).
22. Mitchell J.F.B., Senior C.A., and Ingram W.J., "CO2 and climate: A missing feedback?," Nature, 341, 132-143 (1989).
23. Roberts D.L. and Jones A., "Climate sensitivity to black carbon aerosol from fossil fuel combustion," J. Geophys. Res., 109, D16202 (2004).
24. Jones A., Haywood J.M., and Boucher O., "Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model," J. Geophys. Res., 112, D20211 (2007).
25. Joshi M., Shine K., Ponater M., Stuber N., Sausen R., and Li L., "A comparison of climate response to different radiative forcings in three general circulation models: towards an improved metric of climate change," Clim. Dyn., 20, 843-854 (2003).
26. Boer G.J. and Yu B., "Climate sensitivity and response," Clim. Dyn., 20, 415-429 (2003).