Том 16, номер 03, статья № 8

Тютерев Вл. Г. Глобальные вариационные и эффективные методы расчетов положений и интенсивностей спектральных линий трехатомных молекул: некоторые тенденции и особенности нового поколения спектроскопичеких информационных систем . // Оптика атмосферы и океана. 2003. Т. 16. № 03. С. 245-255.    PDF
Скопировать ссылку в буфер обмена

Аннотация:

Дается краткий обзор основных теоретических методов, используемых для расчетов и моделирования центров и интенсивностей колебательно-вращательных переходов в молекулярных спектрах высокого разрешения. Проблемы расчетов полос с большими DV, высоких вращательных состояний и аномалий в интенсивностях иллюстрируются примерами для молекул O3, H2S, H2O и их изотопических модификаций. Обсуждаются расчетные спектроскопические банки нового поколения, включающие информацию по потенциальным функциям и функциям дипольного момента.

Список литературы:

1. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, P. Varanasi, The HITRAN molecular spectroscopic database, JQSRT 60, 665-710 (1998).
2. Jacquinet-Husson N., Arie E., Ballard J., Barbe A., Bjoraker G., Bonnet B., Brown L.R., Camy-Peyret C., Champion J.-P., Chedin A., Chursin A., Clerbaux C., Duxbury G., Flaud J.-M., Fourrie N., Fayt A., Granier G., Gamache R., Goldman A., Golovko V.I., Guelachvili G., Hartmann J.M., Hilico J.C., Hillman J., Lefevre G., Lellouch E., Mikhailenko S.N., Naumenko O.V., Nemtchinov V., Newnham D.A., Nikitin A., Orphal J., Perrin A., Reuter D.C., Rinsland C.P., Rosenmann L., Rothman L.S., Scott N.A., Selby J., Sinitsa L.N., Sirota J.N., Smith A.M., Smith K.M., Tyuterev Vl.G., Tipping R.H., Urban S., Varanasi P., Weber M. The 1997 spectroscopic GEISA databank, JQSRT 62, 205 (1999).
3. Pickett H.M., Poynter R.L., Cohen E.A., Delitsky M.L., Pearson J.C., Muller H.S.P. Submillemiter, millemiter, and microwave spectral line catalog, JQSRT 60, 883 (1998).
4. Tyuterev Vl.G., Babikov Yu.L., Tashkun S.A., Perevalov V.I., Nikitin A., Champion J.-P., Hilico J.C., Loete M., Pierre C.L., Pierre G. and Wenger Ch., T.D.S. spectroscopic databank for spherical tops, JQSRT 52, 459-480 (1994).
5. C. Wenger et J.-P. Champion, Spherical Top Data System (STDS) software for the simulation of spherical top spectra, JQSRT 59, 471 (1998).
6. H. Partridge, D.W. Schwenke, The Determination of an Accurate Isotope Dependent Potential Energy Surface for Water from Extensive ab initio Calculations and Experimental Data, J.Chem. Phys. 106, 4618-4639 (1997).
7. D.W. Schwenke, H. Partridge, Convergence testing of the analytical representation of an ab initio DMS function of water: Improved fitting yields improved intensities. J. Chem. Phys. 113, 6592-6597 (2000).
8. J. Tennyson, Computational Molecular Spectroscopy, J. Wiley&Sons, Chichester, (2000).
9. T. Cours, P. Rosmus, and Vl.G. Tyuterev, Ab initio dipole moment function of H2 32S and intensity anomalies in rovibrational spectra. J. Chem. Phys. 117, 5192-5208 (2002).
10. Vl.G. Tyuterev, A. Barbe, S.N. Mikhailenko, Yu.L. Babikov, The ozone molecule: S&MPO information system on WEB. State of art in recent studies on molecular properties and high-resolution spectroscopy. The 17th colloquium on high resolution molecular spectroscopy. Nimegue (sept. 2001).
11. S. Mikhailenko, Yu. Babikov, Vl.G. Tyuterev, A. Barbe, The DataBank of Ozone Spectroscopy on WEB (S&MPO), Computational Technologies 7, 64-70 (2002), (in Russian).
12. Barbe A., Mikhailenko S.N., Tyuterev Vl.G., Babikov Yu.L. The spectral and Molecular properties of Ozone (S&MPO) databank, HITRAN conference, 2002.
13. G. Amat, H.H. Nielsen, G. Tarrago, Rotation-Vibration of Polyatomic Molecules, Dekker, New York, (1971).
14. M.R. Aliev, J.K.G. Watson, Higher-Order Effects in the Vibration-Rotation Spectra of Semirigid Molecules // Molecular Spectroscopy: Modern Research, III, Academic Press: San Diego, CA, 1-67 (1985).
15. Vl.G. Tyuterev, V.I. Perevalov, Generalized Contact Transformations for Quasi-Degenerate Levels, Chem. Phys. Lett. 74, 494-502 (1980).
16. Yu.S. Makushkin, Vl.G. Tyuterev, Perturbation Methods and Effective Hamiltonians // Molecular Spectroscopy, Nauka, Novosibirsk, (1984) (in Russian).
17. J.K.G. Watson, Determination of Centrifugal Distortion Coefficients of Asymmetric Top Molecules, J. Chem. Phys. 46, 1935-1949 (1967).
18. J.K.G. Watson // Vibrational Spectra and Structure / Durig. J., Ed. 6, Elsevier, Amsterdam, pp. 1-89 (1977).
19. J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, V. Malathy Devi, Atlas of Ozon Line Parameters from Microwave to Medium Infrared, Academic Press, New York, (1990).
20. J.-M. Flaud, R. Bacis, The Ozone Molecule: Infrared and Microwave Spectroscopy, Spectrochimica Acta 54A, 3-16 (1998).
21. L.R. Brown, J.A. Crisp, D. Crisp, O.V. Naumenko, M.A. Smirnov, L.N. Sinitsa, and A. Perrin, J. Mol. Spectrosc. 188, 148 (1998).
22. A. Barbe, J.J. Plateaux, S.N. Mikhailenko, Vl.G. Tyuterev, Infrared Spectrum of Ozone in the 4600 and 5300 cm-1 Regions: High Order Accidental Resonances Through the Analysis of 1+2 2+3 3- 2, 1+2 2+3 3, and 4 1+ 3 Bands, J. Mol. Spectrosc. 185, 408-416 (1997).
23. Tyuterev Vl.G. The generating function approach to the formulation of the effective rotation Hamiltonian. Simple closed form model describing strong centrifugal distortion in water type molecules, J. Mol. Spectrosc. 151, 97-129 (1992).
24. Tyuterev Vl.G., Starikov V.I., Tashkun S.A., Mikhailenko S.N. Calculation of high rotational energies of water molecule using the generation function model, J. Mol. Spectrosc. 170, 38-58 (1995).
25. Стариков В.И., Тютерев Вл.Г. Теоретическое моделирование внутримолекулярных взаимодействий в спектроскопии нежестких молекул // Оптика атмосф. и океана. 1995. Т. 8. С. 181-200.
26. L.H. Coudert, J. Mol. Spectrosc. 154, 427-442 (1992).
27. R. Lanquetin, L.H. Coudert, C. Camy-Peyret, High-Lying Rotational Levels of Water: An Analysis of the Energy Levels of the Five First Vibrational States, J. Mol. Spectrosc. 206, 83-103 (2001).
28. V.I. Starikov, Vl. G. Tyuterev, Intramolecular Ro-Vibrational Interactions and Theoretical Methods in the Spectroscopy of Nonrigid Molecules, Tomsk: SB RAS, (1997), 230 p. (in Russian).
29. Champion J.-P., Loete M., and Pierre G. Spherical top spectra // Spectroscopy of the Earth's atmosphere and interstellar medium. San Diego: Academic Press, 1992. P. 339-422.
30. Nikitin A., Champion J.-P., Tyuterev Vl.G. Improved algorithms for the modeling of vibrational polyads of polyatomic molecules: application to Td, Oh, and C3v molecules, J. Mol. Spectrosc. 182, 72-84 (1997).
31. Nikitin A., Champion J.-P., Tyuterev Vl.G., Brown L.R., Mellau G., Lock M. The infrared spectrum of CH3D between 900 and 3200 cm-1, extended assignment and modeling, J. Mol. Structure. 2000. V. 517-518. P. 1-24.
32. Nikitin A., Champion J.-P., Tyuterev Vl.G., The MIRS computer package for modelling the rovibrational spectra of polyatomic molecules, JQSRT, special HITRAN issue, 2003 (to be published).
33. Tashkun S.A., Perevalov V.I., Teffo J.-L., Rothman L.S., and Tyuterev Vl.G. Global fitting of 12C16O2 vibrational-rotational line positions using the effective Hamiltonian approach, JQSRT 60, 785-801 (1998).
34. Tashkun S.A., Perevalov V.I., Teffo J.-L., and Tyuterev Vl.G. Global fit of 12C16O2 vibrational-rotational line intensities using the effective operator approach, JQSRT 62, 571-598 (1999).
35. Teffo J.L., Lyulin O.M., Perevalov V.I., and Lobodenko E.I. Application of the effective operator approach to the calculation of 12C16O2 line intensities // J. Mol. Spectrosc. 1998. V. 187. P. 28-41.
36. S.A. Tashkun, V.I. Perevalov, J.L. Teffo, A.D. Bykov, and N.N. Lavrent'eva, CDSD-1000, the high-temperature carbon dioxide spectroscopic databank, JQSRT, special HITRAN issue, 2003 (to be published).
37. K. Sarka, J. Demaison, Perturbation Theory, Effective Hamiltonians and Force Constants // Computational Molecular Spectroscopy, J. Wiley, Chichester, (2000).
38. Vl.G. Tyuterev, V.I. Perevalov, V.I. Starikov, Method of Effective Operators in Theory of High-Resolution Molecular Spectra // Modern Problems of Optics and Spectroscopy, TGU, Tomsk, (2001) (in Russian).
39. Vl.G. Tyuterev, Effective Hamiltonians and Perturbation Theory for Quantum Bound States of Nuclear Motion in Molecules //Symmetry and perturbation theory, World Scientific Publishing, 254-266 (2002).
40. S.E. Choi, J.C. Light, Highly Excited Vibrational Eigenstates of Nonlinear Triatomic Molecules. Application to H2O, J. Chem. Phys. 97, 7031-7054 (1992).
41. J.R. Henderson, C.R. Le Sueur, J. Tennyson, Comput. Phys. Commun. 75, 379 (1993).
42. M.J. Bramley, T. Carrington, Jr., A General Discrete Variable Method to Calculate Vibrational Energy Levels of Three- and Four-Atom Molecules, J. Chem. Phys. 99, 8519-8541 (1993).
43. P. Jensen, New Morse Oscillator-Rigid Bender Internal Dynamics (MORBID) Hamiltonian for Triatomic Molecules, J. Mol. Spectrosc. 128, 478-501 (1988).
44. D.W. Schwenke, Variational Calculations of Rovibratonal Energy Levels and Transition Intensities for Tetratomic Molecules, J. Phys. Chem. 100, 2867-2884 (1996).
45. W. Gabriel, E.-A. Reinsch, P. Rosmus, S. Carter, N.C. Handy, Theoretical integrated vibrational band intensities of water vapor, J. Chem. Phys. 99, 897 (1993).
46. P. Jensen, P. Bunker, Computational Molecular Spectroscopy, J. Wiley&Sons, Chichester, (2000).
47. Rothman L.S., Wattson R.B., Gamache R.R., Goorvitch D., Hawkins L.R., Selby J.E.A., HITEMP, the high-temperature molecular spectroscopic database, JQSRT, in preparation.
48. Vl.G. Tyuterev, S.A. Tashkun., P. Jensen, A. Barbe and T. Cours, Determination of the Effective Ground State Potential Energy Function of Ozone from High Resolution Infrared Spectra, J. Mol. Spectrosc. 198, 57-76 (1999).
49. Vl.G. Tyuterev, S.A. Tashkun, D.W. Schwenke, P. Jensen, T. Cours, A. Barbe, M. Jacon, Variational EKE-Calculations of Rovibrational Energies of the Ozone Molecule from an Empirical Potential Function, Chem. Phys. Lett. 316, 271-279 (2000).
50. Vl.G. Tyuterev, S.A. Tashkun, and D.W. Schwenke, An accurate isotopically invariant potential function of the hydrogen sulphide molecule, Chem. Phys. Lett. 348, 223-234 (2001).
51. Vl.G. Tyuterev, S.A. Tashkun, private communication.
52. S.N. Mikhailenko, Vl.G. Tyuterev, K.A. Keppler, B.P. Winnewisser, M. Winnewisser, G. Mellau, S. Klee, K.N. Rao, J. Mol. Spectrosc. 184, 330-349 (1997).
53. S.N. Mikhailenko, Vl.G. Tyuterev, V.I. Starikov, K.K. Albert, B.P. Winnewisser, M. Winnewisser, G. Mellau, C. Camy-Peyret, R. Lanquetin, J.-M. Flaud and J.W. Brault, Water spectra in the 4200-6250 cm-1 region: extended analysis of 1+ 2, 2+ 3, and 3 2 bands and confirmation of highly excited states from flame spectra and from atmospheric long-path observations, J. Mol. Spectrosc. 213, 91-121 (2002).
54. L.P. Giver, C. Chackerian, Jr., and P. Varanasi, Visible and near-infrared 161 line intensity corrections for HITRAN-96, JQSRT 66, 101-105 (2000).
55. M. Carleer, A. Jenouvrier, A.C. Vandaele, P. Bernath, M-F. Merienne, R. Colin, N.F. Zobov, O.L. Polyansky, J. Tennyson and V.A. Savin, The near infrared, visible, and near ultraviolet overtone spectrum of water, J. Chem. Phys. 111, 2444-2450 (1999).
56. N.F. Zobov, O.L. Polyansky, J. Tennyson, S.V. Shirin, R. Nassar, T. Hirao, P.F. Bernath, L. Wallace, Using Laboratory Spectroscopy to Identify Lines in the K- and L-Band Spectrum of Water in a Sunspot, The Astrophysical Journal 530, 994-998 (2000).
57. O. Naumenko, A. Campargue, E. Bertseva, D. Schwenke, Experimental and ab nitio Studies of the HDO Absorption Spectrum in the 13 165 - 13 500 cm-1 Spectral Region, J. Mol. Spectrosc. 201, 297-309 (2000).
58. S.N. Mikhailenko, Vl.G. Tyuterev, G. Mellau, (000) and (010) States of H218O: Analysis of Rotational Transitions in Hot Emission Spectrum in the 400-850 cm-1 Region, J. Mol. Spectrosc., accepted (2002).
59. Быков А.Д., Синица Л.Н., Стариков В.И. Экспериментальные и теоретические методы в спектроскопии водяного пара. Новосибирск: Изд-во СО РАН, 1999. 376 c.
60. C.P. Rinsland, J.-M. Flaud, A. Perrin, M. Birk, G. Wagner, A. Goldman, A. Barbe, M.-R. De Backer-Barilly, S.N. Mikhailenko, Vl.G. Tyuterev, M.A.H. Smith, V. Malathy Devi, D.C. Benner, F. Schreier, K.V. Chance, J. Orphal, T.M. Stephen, Spectroscopic Parameters for Ozone and Its Isotopes: Recent Measurements, Outstanding Issues, and Prospects for Improvements to HITRAN, JQSRT, special HITRAN issue, 2003 (to be published).
61. A. Barbe, A. Chichery, Vl.G. Tyuterev, S.A. Tashkun, S.N. Mikhailenko, Infrared High-Resolution Spectra of Ozone in the Range 5500-5570 cm-1: Analysis of 2+5 3 and 1+ 2+4 3 Bands, J. Phys. B: At. Mol. Opt. Phys., 31, 2559-2569 (1998).
62. A. Barbe, S.N. Mikhailenko, J.J. Plateaux, Vl.G. Tyuterev, Analysis of the 2 1+ 2+2 3 Band of Ozone, J. Mol. Spectrosc. 182, 333-341, (1997).
63. A. Barbe, A. Chichery, Vl.G. Tyuterev, J.J. Plateaux, Analysis of High Resolution Measurements of the 1+5 3 Band of Ozone: Coriolis Interactions with the 6 3 and 3 1+ 2+2 3 Bands, Molecular Physics 94, 751-757 (1998).
64. S.N. Mikhailenko, A. Barbe, Vl.G. Tyuterev, A. Chichery, High Resolution IR Spectra of the Ozone Molecule, Atmospheric and Oceanic Optics 12, 771-785 (1999).
65. B.Y. Chang, C.Y. Kung, C. Kittrell, C.W. Hsiao, B.R. Johnson, S.G. Glogover, J.L. Kinsey, High-Accuracy Measurement of Vibrational Raman Bands of Ozone at 266 and 270 nm Excitations, J. Chem. Phys. 101, 1914-1922 (1994).
66. R. Siebert, P. Fleurat-Lessard, R. Schinke, M. Bittererova, and S.C. Farantos, The vibrational energies of ozone up to the dissiciation threshold: dynamics calculations on an accurate potential energy surface, J. Chem. Phys. 116, 9749-9767 (2002).
67. P. Rosmus, P. Palmieri, R. Schinke, The asymptotic region of the potential energy surface relevant for the O+O2 -> O3 reaction, J. Chem. Phys. 117, 4871-4877 (2002).
68. Barbe A., Tyuterev Vl.G., Tashkun S.A., De Backer-Barilly M.-R., Bourgeois M.T. New analysis of dense spectra of ozone isotopic species 16O16O18O, 16O18O18O, 16O18O16O and 18O16O18O assisted with global predictions. MODAS Irkutsk, Russia, 25-29 juin 2001.
69. Vl.G. Tyuterev, S.A. Tashkun, D.W. Schwenke, and A. Barbe, An accurate isotopically invariant potential function of the ozone molecule near the open state equilibrium determined from spectroscopic data, to be published.
70. A. Chichery, A. Barbe, Vl.G. Tyuterev, S.A. Tashkun, High Resolution IR Spectra of 18O-Enriched Ozone: Band Centers of 16O16O18O, 16O18O18O, 18O16O18O, and 16O18O16O, J. Mol. Spectrosc. 205, 347-349 (2001).
71. De Backer-Barilly M.-R., Barbe A., Tyuterev Vl.G., Chichery A., Bourgois M.T., High-Resolution IR Spectra of the 16O18O16O in the range 900-5000 cm-1, J. Mol. Spectrosc. 216, 454-464 (2002).
72. De Backer-Barilly M.-R., Barbe A., Tashkun S., Tyuterev Vl.G., The 5 3 bands of 18O enriched ozone: line positions of 16O16O18O, 16O18O16O, 16O18O18O and 18O16O18O, Molecular Physics 100, 3499-3506 (2002).
73. A. Flaud, O. Vattinen, and A. Campargue, J. Mol. Spectrosc. 190, 262 (1998).
74. O. Naumenko and A. Campargue, H232S: First Observation of the (70±,0) Local Mode Pair and Updated Global Effective Vibrational Hamiltonian, J. Mol. Spectrosc. 210, 224-232 (2001).
75. J. Senekowitsch, S. Carter, A. Zilch, H.-J. Werner, N.C. Handy and P. Rosmus, J. Chem. Phys. 90, 783-794 (1989).
76. O.N. Sulakshina, Yu. Borkov and Vl.G. Tyuterev, Calculating parameters of the H2S molecule dipole moment function. Atmospheric and Oceanic Optics. 14, 753-761 (2001).
77. Vl.G. Tyuterev, D.W. Schwenke and S.A. Tashkun, Intensities of isotopic species of hydrogen sulphide molecule from an accurate potential and dipole moment functions, J. Chem. Phys., in preparation (2002).
78. Vl.G. Tyuterev, S.A. Tashkun, D.W. Schwenke, L. Regalia and Yu. Borkov, Global calculations of IR transitions of 9 isotopic species H2S, D2S, HDS with substitutions 32S, 33S, 34S and simulations of high-resolution spectra. Work in progress (2003).