Том 16, номер 03, статья № 1

Фло Ж.-М.., Пикколо К.., Карли Б.., Перрен А.., Кудер Л. Х., Теффо Ж. Л., Браун Л.. Р.. Параметры молекулярных линий для эксперимента MIPAS (Интерферометр Майкельсона для пассивного зондирования атмосферы). // Оптика атмосферы и океана. 2003. Т. 16. № 03. С. 194-205.    PDF
Скопировать ссылку в буфер обмена

Аннотация:

Эксперимент MIPAS (интерферометр Майкельсона для пассивного зондирования атмосферы) проводился со спутника ENVISAT с использованием Фурье-спектрометра с целью получения инфракрасных лимбовых спектров атмосферы Земли из космоса с высоким разрешением. Возможности измерительной аппаратуры позволяли регистрировать вертикальные профили малых атмосферных газов каждые 75 с как днем, так и ночью с почти полным покрытием всего земного шара. Таким образом получались трехмерные картины состава атмосферы. Для обработки большого потока данных международной группой ученых в рамках контракта ESA была разработана оптимизированная программа потокового анализа данных MIPAS. В постоянном автоматическом режиме данная программа выдает вертикальные профили температуры и давления, а также концентраций таких газов, как O3, H2O, CH4, HNO3, N2O и NO2, для высот от 6 до 68 км. Для анализа и интерпретации лимбовых спектров требуется знание молекулярных параметров этих газов, а также мешающих газов. В данной статье описывается база данных параметров спектральных линий для эксперимента MIPAS.

Список литературы:

1. M. Ridolfi M., B.Carli, M. Carlotti, T.V. Clarmann, B.M. Dinelli, A. Dudhia, J.-M. Flaud, M. Hoepfner, P.E. Morris, P. Raspollini, G. Stiller, R.J. Wells, Optimized forward model and retrieval scheme for MIPAS near-real-time data processing, Appl. Opt. 39, No. 8, 1323-1340 (1999).
2. A. Dudhia, V.L. Jay and C.D. Rodgers, Microwindow selection for high-spectral-resolution sounders, Appl. Opt. 41, 3665-3673 (2002).
3. M. Lopez-Puertas and F.W. Taylor, Non-LTE Radiative Transfer in the Atmosphere, World Scientific (2002).
4. L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mc. Cann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov and P. Varanasi, The HITRAN molecular spectroscopic data base and HAWKS (HITRAN Atmospheric Work Station): 1996 edition, JQSRT, 60, 665-710 (1998).
5. N. Jacquinet-Husson, E. Arie, J. Ballard, A. Barbe, G. Bjoraker, B. Bonnet, L.R. Brown, C. Camy-Peyret, J.-P. Champion, A. Chedin, A. Chursin, C. Clerbaux, G. Duxbury, J.-M. Flaud, N. Fourrie, A. Fayt, G. Graner, R. Gamache, A. Goldman, Vl. Golovko, G. Guelachvili, J.-M. Hertmann, J.C. Hilico, J. Hillman, G. Lefevre, E. Lellouch, S.N. Mikhailenko, O.V. Naumenko, V. Nemtchinov, D.A. Newnham, A. Nikitin, J. Orphal, A. Perrin, D.C. Reuter, C.P. Rinsland, L. Rosenmann, L.S. Rothman, N.A. Scott, J. Selby, L.N. Sinitsa, J.M. Sirota, A.M. Smith, K.M. Smith, Vl.G. Tyuterev, R.H. Tipping, S. Urban, P. Varanasi, M. Weber, The 1997 spectroscopic GEISA databank, JQSRT, 62, 205-254 (1999).
6. M.R. Gunson et al., The Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment: Deployment on the ATLAS Space Shuttle missions, Geophys. Res. Lett. 23, 17, 2333-2336 (1996).
7. ftp://cfa-ftp.harvard.edu
8. L.H. Coudert, Analysis of the rotational energy levels of water and determination of the potential energy function for the bending 2 mode, J. Molec. Spectrosc. 165, 406 (1994).
9. R. Lanquetin, L.H. Coudert, and C. Camy-Peyret, High-Lying rotational levels of water: an analysis of the energy levels of the five first vibrational states, J. Mol. Spectrosc. 206, 83 (2001).
10. L.H. Coudert, Line Frequency and line intensity analyses of water vapor, Mol. Phys. 96, 941 (1999).
11. J.W.C. Johns, High-resolution far-infrared spectra of seve-ral isotopic species of H2O, J. Opt. Soc. Am. B 2, 1340 (1985).
12. Paso and Horneman, High-resolution rotational absorption spectra of H216O, HD16O, and D216O between 110 and 500 cm-1, J. Opt. Soc. Am. B 12, 1813 (1995).
13. R.A. Toth, Water vapor measurements between 590 and 2582 cm-1: Line positions and strengths, J. Mol. Spectrosc. 190, 379 (1998).
14. R.A. Toth, 1 - 2, 3 - 2, 1, and 3 bands of H216O: line positions and strengths, J. Opt. Soc. Am. B 10, 2006 (1993).
15. R.A. Toth, 2 - 2 and 2 2 bands of H216O, H217O and H218O: line positions and strengths, J. Opt. Soc. Am. B 10, 1526 (1993).
16. C.P. Rinsland, A. Goldman, M.A.H. Smith, and V.M. Devi, Measurements of Lorentz air-broadening coefficients and relative intensities in the H216O pure rotational and 2 bands from long horizontal path atmospheric spectra, Appl. Optics 30, 1427 (1991).
17. L.R. Brown and Plymate, H2-Broadened H216O in four infrared bands between 55 and 4045 cm-1, JQSRT, 56, 263 (1996).
18. R.A. Toth, private communication (2001).
19. R.B. Wattson and L.S. Rothman, Direct numerical Diagonalization: wave of the future, JQSRT, 48, 763-780 (1992).
20. S.A. Tashkun, V.I. Perevalov, J.L. Teffo, L.S. Rothman, and Vl.G. Tyuterev, Global fitting of CO2 vibration-rotation line positions using the effective Hamiltonian approach, JQSRT, 60, 785-801 (1998).
21. S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, and Vl.G. Tyuterev, Global fitting of 12C16O2 vibration-rotation line intensities using the effective operator approach, JQSRT, 62, 571-598 (1999).
22. S.A. Tashkun, V.I. Perevalov and J.-L. Teffo, CDSD: a high precision high temperature spectroscopic databank of the CO2 molecule, Ve Colloque Atmospheric Spectroscopy Applications. Reims (1er-3 septembre 1999).
23. S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, M. Lecoutre, T.R. Huet, A. Campargue, D. Bailly, and M.P. Esplin, 13C16O2: Global treatment of vibrational-rotational spectra and first observations of the 2 1 + 5 3 and 1 + 2 2 + 5 3 absorption bands, J. Mol. Spectrosc. 200, 162-176 (2000).
24. J.-L. Teffo, C. Claveau, Q. Kou, G. Guelachvili, A. Ubelmann, V.I. Perevalov and S.A. Tashkun, Line intensities of 12C16O2 in the 1.2-1.4 µm spectral region, J. Mol. Spectrosc. 201, 249-255 (2000).
25. S.A. Tashkun, V.I. Perevalov and J.-L. Teffo, Global fittings of the vibrational-rotational line positions of the 16O12C17O and 16O12C18O isotopic species of carbon dioxide, J. Mol. Spectrosc. 210, 137-145 (2001).
26. J.-L. Teffo, L. Daumont, C. Claveau, A. Valentin, V.I. Perevalov and S.A. Tashkun, Infrared spectra of the 16O12C17O and 16O12C18O species of carbon dioxide: The region 500-1500 cm-1, J. Mol. Spectrosc. 213, 145-152 (2002).
27. J.-L. Teffo, L. Daumont, C. Claveau, A. Valentin, V.I. Perevalov and S.A. Tashkun, Infrared spectra of the 16O12C17O and 16O12C18O species of carbon dioxide: The region 1500-3000 cm-1, J. Mol. Spectrosc. (to be published).
28. M.A.H. Smith, V. Malathy Devi, D.C. Benner and C.P. Rinsland, Absolute intensities of 16O3 lines in the 9-11 m region, J. Geophys. Res. 106, 9909-9921 (2001).
29. C. Claveau, C. Camy-Peyret, A. Valentin and J.-M. Flaud, Absolute intensities of the 1 and 3 bands of 16O3, J. Mol. Spectrosc. 206, 115-125, 2001.
30. M.-R. De Backer-Barilly and A. Barbe, Absolute intensities of the 10 m bands of 16O3, J. Mol. Spectrosc. 205, 43-53 (2001).
31. G. Wagner, M. Birk, F. Schreir and J.-M. Flaud, Spectroscopic database of ozone in the fundamental spectral region, J. Geophys. Res., in press, 2002.
32. J.-M. Flaud, G. Wagner, M. Birk, C. Camy-Peyret, C. Claveau, M.-R. De Backer-Barilly, A. Barbe and C. Piccolo, The ozone absorption around 10 m, J. Geophys. Res., in press, 2003.
33. J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith and V. Malathy Devi, Atlas of ozone spectral parameters from microwave to medium infrared, Academic Press, Cambridge, Massachusetts, 1990.
34. C.P. Rinsland, J.-M. Flaud, A. Goldman, A. Perrin, C. Camy-Peyret, M. A. H. Smith, V. Malathy Devi, D.C. Benner, A. Barbe, T.M. Stephen and F.J. Murcray, Spectroscopic parameters for ozone and its isotopes: current status, prospects for improvement and the identification of 16O16O17O and 16O17O16O lines in infrared ground based and stratospheric solar absorption spectra, JQSRT, 60, 803-814 (1998).
35. M. Heyart, A. Perrin, J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith and V. Malathy Devi, The 1 and 3 bands of 16O17O16O. Line positions and intensities, J. Mol. Spectrosc. 156, 210-216 (1992).
36. M. Heyart, A. Perrin, J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith and V. Malathy Devi, The hybrid type 1 and 3 bands of 16O16O17O: line positions and intensities, J. Mol. Spectrosc. 157, 524-531 (1993).
37. D.W. Arlander, A. Barbe, M.T. Bourgeois, A. Hamdouni, J.-M. Flaud, C. Camy-Peyret and Ph. Demoulin, The identification of 16O18O16O and 16O16O18O isotopes in high resolution ground-based spectra, JQSRT, 52, 267-272 (1994).
38. A. Goldman, C.P. Rinsland, A. Perrin, J.-M. Flaud, A. Barbe, C. Camy-Peyret, M.T. Coffey, W.G. Mankin, J.W. Hanningan, T.M. Stephen, V. Malathy Devi, and M.A.H. Smith, Weak ozone isotopic absorption in the 5 µm region from FTIR solar spectra, JQSRT. 74, 133-138 (2002).
39. J.-M. Flaud, M.T. Bourgeois, A. Barbe, J.-J. Plateaux, and C. Camy-Peyret, The 1+ 3 bands of 16O18O16O and 16O16O18O, J. Mol. Spectrosc. 165, 464-469 (1994).
40. A. Perrin, J.-M. Flaud, F. Keller, M.A.H. Smith, C.P. Rinsland, V. Malathy Devi, D.C. Benner, T.M. Stephen, and A. Goldman, The 1+ 3 bands of 16O17O16O and 16O16O17O isotopomers of ozone, J. Mol. Spectrosc. 207, 54-59, 2001.
41. J.P. Champion, J.C. Hilico, C. Wenger, and L.R. Brown, Analysis of the 2/ 4 Dyad of 12CH4 and 13CH4, J. Mol. Spectrosc. 133, 256-272 (1989).
42. O. Ouardi, J.C. Hilico, M. Loete, and L.R. Brown, The hot bands of methane between 5 and 10 m, J. Mol. Spectrosc. 180, 311-322 (1996).
43. A. Nikitin, L.R. Brown, L. Fejard, J.-P. Champion, and Vl.G. Tyuterev, Analysis of the CH3D nonad from 2000-3300 cm-1, J. Mol. Spectrosc. (in press).
44. D.C. Benner, V.M. Devi, M.A.H. Smith, and C.P. Rinsland, Air-broadening, N2-broadening, and O2-broadening and shift coefficients in the 3 spectral region of 12CH4, JQSRT, 50, 65-89 (1993).
45. M.A.H. Smith, C.P. Rinsland, V.M. Devi, and D.C. Benner, Temperature-dependence of broadening and shifts of methane lines in the 4 band, Spectrochimica Acta 48A, 1257-1272 (1992).
46. V.M. Devi, D.C. Benner, M.A.H. Smith, and C.P. Rinsland, Temperature-dependence of Lorentz air-broadening and pressure-shift coefficients of 12CH4 lines in the 2.3- m spectral region, JQSRT, 51, 439-465 (1994).
47. V.M. Devi, D.C. Benner, M.A.H. Smith, C.P. Rinsland, and L.R. Brown, Self- and N2-broadening, pressure induced shift and line mixing in the 5 band of 12CH3D
using a multi-spectrum fitting technique, JQSRT 74, 1-41 (2002).
48. L. Brown et al. Methane line parameters in HITRAN, (JQSRT, 2003, to be published).
49. F. Hase, N. Glatthor and G. Stiller, private communication (2002).
50. L.R. Brown, private communication (2002).
51. A. Perrin, J.-M. Flaud, C. Camy-Peyret, A.M. Vasserot, G. Guelachvili, A. Goldman, F.J. Murcray and R.D. Blatherwick, The 1, 2 2 and 3 interacting bands of NO2: line positions and intensities, J. Mol. Spectrosc. 154, 391-406 (1992).
52. C. Camy-Peyret, J.-M.Flaud and A. Perrin, Improved line parameters for the 3 and 2 + 3 - 2 bands of NO2, J. Mol. Spectrosc. 95, 72-79 (1982).
53. A. Perrin, J.-M. Flaud, C. Camy-Peyret, D. Hurtmans, M. Herman and G. Guelachvili, The 2 + 3 and 2 + 3 - 2 bands of NO2: line positions and intensities, J. Mol. Spectrosc. 168, 54-66 (1994).
54. J.-Y. Mandin, V. Dana, A. Perrin, J.-M. Flaud, C. Camy-Peyret, L. Regalia and A. Barbe, The { 1 + 2 2, 1 + 3} bands of NO2: line positions and intensities, line intensities in the 1 + 2 + 3 - 2 hot band, J. Mol. Spectrosc. 181, 379-388 (1997).
55. A. Perrin, J.-M. Flaud, C. Camy-Peyret, D. Hurtmans and M. Herman, The {2 3, 4 2, 2 2 + 3} and 2 3 - 3 bands of NO2: line positions and intensities, J. Mol. Spectrosc. 177, 58-65 (1996).
56. T.M. Stephen, A. Goldman, A. Perrin, J.-M. Flaud, F. Keller and C.P. Rinsland, New high resolution analysis of the 3 3 and 2 1 + 3 bands of NO2 by Fourier transform spectroscopy, J. Mol. Spectrosc. 201, 134-142 (2000).
57. A.C. Vandaele, C. Hermans, S. Fally, M. Carleer, M.-F. Merienne, A. Jenouvrier and R. Colin, Absorption cross-section of NO2: Simulation of temperature and pressure effects, JQSRT (in press).
58. V. Dana, J.-Y. Mandin, M.-Y. Allout, A. Perrin, L. Regalia, A. Barbe and X. Thomas, Broadening parameters of NO2 lines in the 3.4 m spectral region, JQRST 57, 445-457 (1997).
59. V. Malathy Devi, B. Fridovich, G.D. Jones, D.G.S. Snyder, P.P. Das, J.-M. Flaud, C. Camy-Peyret, and K. Narahari Rao, Tunable diode laser spectroscopy of NO2 at 6.2 µm, J. Mol. Spectrosc. 93, 179-195 (1982).
60. V. Malathy Devi, B. Fridovich, G.D. Jones, D.G.S. Snyder and A. Neuendorffer. Temperature dependence of the widths of N2-broadened lines of the 3 band of 14N16O2, Appl. Opt. 21, 1537-1538 (1982).
61. R.D. May and C.R. Webster, Laboratory measurements of NO2 line parameters near 1600 cm-1 for the interpretation of stratospheric spectra, Geophys. Res. Let. 17, 2157-2160 (1990).
62. S. Voigt, J. Orphal and J.P. Burrows, The temperature and pressure dependence of the absorption cross-sections of NO2 in the 250-800 nm region measured by Fourrir transform spectroscopy, J. Photochemistry and Photobiology A (in press)
63. J.-M. Flaud, A. Perrin, J. Orphal, Quingli Kou, P.-M. Flaud, Z. Dutkiewicz and C. Piccolo, New analysis of the 5 + 9 - 9 hot band of HNO3 , JQSRT (in press, 2003).
64. R.A. Toth, L.R. Brown and E.A. Cohen, Line strengths of nitric acid from 850 to 920 cm-1, J. Mol. Spectrosc (in press, 2003).
65. A. Goldman, T. G. Kyle, and F. S. Bonomo, Statistical band model parameters and integrated intensities for the 5.9 micron, and 7.5 µm, and 11.3 µm bands of HNO3 vapour, Appl. Opt. 10, 65-73 (1971).
66. L.P. Giver, F.P.J. Valero, D. Goorvitch, and F.S. Bonomo, Nitric-acid band intensities and band-model parameters from 610 to 1760 cm-1, J. Opt. Soc. Am. B1, 715-722 (1984).
67. S.T. Massie, A. Goldman, D.G. Murcray, and J.C. Gille, Approximate absorption cross sections of F12, F11, ClONO2, N2O5, HNO3, CCl4, CF4, F21, F113, F114, and HNO4, Appl. Opt. 24, 3426-3427 (1985).
68. J. Hjorth, G. Ottobrini, F. Cappellani, and G. Restelli, A Fourier-transform infrared study of the rate-constant of the homogeneous gas-phase reaction N2O5 + H2O and determination of absolute infrared band intensities of N2O5 and HNO3, J. Phys. Chem. 91, 1565-1568 (1987).
69. J.-M. Flaud, M. Birk, G. Wagner, J. Orphal, J. Klee and W.J. Lafferty, The far infrared spectrum of HOCl: line positions and intensities, J. Mol. Spectrosc. 191, 362-367 (1998).
70. J. Vander Auwera, J. Kleffmann, J.-M. Flaud, G. Pawelke, H. Burger, D. Hurtmans and R. Petrisse, Absolute 2 line intensities of HOCl by simultaneous measurements in the infrared and far infrared spectral regions, J. Mol. Spectrosc. 204, 36-47 (2000).
71. W. Thiel and J. Breidung, private communication (2002).
72. L.R. Brown, private communication (2002).
73. M.J. Hopper, J.W. Russell, and J. Overend, Vibrational intensities of CSF2 and CSCl2, Spectrochim Acta 28A, 1215-1218 (1972).
74. T.N. Adams, D.M. Weston, and R.A. Matulas, Temperature dependence of spectral intensity of Fermi resonant 1943 cm-1 band of carbonyl fluoride, J. Chem. Phys. 55, 5674-5678 (1971).
75. R. Sams (private communication).