Том 36, номер 12, статья № 1

Васильченко С. С., Солодов А. А., Егоров О. В., Тютерев Вл. Г. Экспериментальное исследование и моделирование спектра поглощения синглет-триплетных ровибронных полос озона в диапазоне 11900–12800 см-1. // Оптика атмосферы и океана. 2023. Т. 36. № 12. С. 961-969. DOI: 10.15372/AOO20231201.
Скопировать ссылку в буфер обмена

Аннотация:

Для исследования поглощения озона в ближнем инфракрасном диапазоне разработан компактный абсорбционный спектрометр с непрерывным узкополосным диодным лазером, обеспечивающим чувствительность по коэффициенту поглощения порядка 1 × 10-6 см-1. Описана конструкция спектрометра, методика измерений, схема генерации и контроля концентрации озона. Зарегистрирован спектр поглощения молекулы озона для системы полос Вульфа (11900–12800 см-1), соответствующих ровибронным переходам с основного на возбужденные триплетные электронные состояния выше основного порога диссоциации молекулы. Проведено моделирование коэффициента поглощения и сделана оценка предиссоциационного уширения спектральных линий в исследуемом диапазоне спектра. Рекомендованы сечения поглощения озона для атмосферных приложений в рассматриваемом диапазоне, полученные с помощью статистически взвешенного усреднения новых измерений и опубликованных в литературе экспериментальных лабораторных данных.
 

Ключевые слова:

озон, спектр поглощения, переходы в триплетное электронное состояние, система полос Вульфа, диодно-лазерный абсорбционный спектрометр

Список литературы:

1. Neale R.E., Barnes P.W., Robson T.M., Neale P.J., Williamson C.E., Zepp R.G., Wilson S.R., Madronich S., Andrady A.L., Heikkilä A.M., Bernhard G.H., Bais A.F., Aucamp P.J., Banaszak A.T., Bornman J.F., Bruckman L.S., Byrne S.N., Foereid B., Häder D.P., Hollestein L.M., Hou W.C., Hylander S., Jansen M.A.K., Klekociuk A.R., Liley J.B., Longstreth J., Lucas R.M., Martinez-Abaigar J., McNeill K., Olsen C.M., Pandey K.K., Rhodes L.E., Robinson S.A., Rose K.C., Schikowski T., Solomon K.R., Sulzberger B., Ukpebor J.E., Wang Q.W., Wängberg S., White C.C., Yazar S., Young A.R., Young P.J., Zhu L., Zhu M. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2020 // Photochem. Photobiol. Sci. 2021. V. 20, N 1. P. 1–67. DOI: 10.1007/S43630-020-00001-X.
2. Yook S., Thompson D.W.J., Solomon S. Climate impacts and potential drivers of the unprecedented antarctic ozone holes of 2020 and 2021 // Geophys. Res. Lett. 2022. V. 49, N 10. P. e2022GL098064. DOI: 10.1029/2022GL098064.
3. Grenfell J.L. A review of exoplanetary biosignatures // Phys. Rep. 2017. V. 713. P. 1–17. DOI: 10.1016/J.PHYSREP.2017.08.003.
4. Solomon S. The discovery of the Antarctic ozone hole // Nat. 2019. V. 575, N 7781. P. 46–47. DOI: 10.1038/d41586-019-02837-5.
5. Fang X., Pyle J.A., Chipperfield M.P., Daniel J.S., Park S., Prinn R.G. Challenges for the recovery of the ozone layer // Nat. Geosci. 2019 128 2019. V. 12, N 8. P. 592–596. DOI: 10.1038/s41561-019-0422-7.
6. Wang Z., Ma P., Zhang L., Chen H., Zhao S., Zhou W., Chen C., Zhang Y., Zhou C., Mao H., Wang Y., Wang Y., Zhang L., Zhao A., Weng G., Hu K. Systematics of atmospheric environment monitoring in China via satellite remote sensing // Air Qual. Atmos. Heal. 2021. V. 14, N 2. P. 157–169. DOI: 10.1007/S11869-020-00922-7/TABLES/2.
7. Colombi N., Miyazaki K., Bowman K.W., Neu J.L., Jacob D.J. A new methodology for inferring surface ozone from multispectral satellite measurements // Environ. Res. Lett. 2021. V. 16, N 10. P. 105005. DOI: 10.1088/1748-9326/AC243D.
8. Cuesta J., Costantino L., Beekmann M., Siour G., Menut L., Bessagnet B., Landi T.C., Dufour G., Eremenko M. Ozone pollution during the COVID-19 lockdown in the spring of 2020 over Europe, analysed from satellite observations, in situ measurements, and models // Atmos. Chem. Phys. 2022. V. 22, N 7. P. 4471–4489. DOI: 10.5194/ACP-22-4471-2022.
9. Friedel M., Chiodo G., Stenke A., Domeisen D.I.V., Fueglistaler S., Anet J.G., Peter T. Springtime arctic ozone depletion forces northern hemisphere climate anomalies // Nat. Geosci. 2022. V. 15, N 7. P. 541–547. DOI: 10.1038/s41561-022-00974-7.
10. Андреев В.В., Аршинов М.Ю., Белан Б.Д., Белан С.Б., Давыдов Д.К., Демин В.И., Дудорова Н.В., Еланский Н.Ф., Жамсуева Г.С., Заяханов А.С., Иванов Р.В., Ивлев Г.А., Козлов А.В., Коновальцева Л.В., Коренский М.Ю., Котельников С.Н., Кузнецова И.Н., Лапченко В.А., Лезина Е.А., Оболкин В.А., Постыляков О.В., Потемкин В.Л., Савкин Д.Е., Семутникова Е.Г., Сеник И.А., Степанов Е.В., Толмачев Г.Н., Фофонов А.В., Ходжер Т.В., Челибанов И.В., Челибанов В.П., Широтов В.В., Шукуров К.А. Концентрация тропосферного озона на территории России в 2022 г. // Оптика атмосф. и океана. 2023. Т. 36, № 8. С. 642–655. DOI: 10.15372/AOO20230804.
11. Orphal J., Staehelin J., Tamminen J., Braathen G., De Backer M.R., Bais A., Balis D., Barbe A., Bhartia P.K., Birk M., Burkholder J.B., Chance K., von Clarmann T., Cox A., Degenstein D., Evans R., Flaud J.M., Flittner D., Godin-Beekmann S., Gorshelev V., Gratien A., Hare E., Janssen C., Kyrölä E., McElroy T., McPeters R., Pastel M., Petersen M., Petropavlovskikh I., Picquet-Varrault B., Pitts M., Labow G., Rotger-Languereau M., Leblanc T., Lerot C., Liu X., Moussay P., Redondas A., Van Roozendael M., Sander S.P., Schneider M., Serdyuchenko A., Veefkind P., Viallon J., Viatte C., Wagner G., Weber M., Wielgosz R.I., Zehner C. Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015 // J. Mol. Spectrosc. 2016. V. 327. P. 105–121. DOI: 10.1016/J.JMS.2016.07.007.
12. Glatthor N., Von Clarmann T., Stiller G.P., Kiefer M., Laeng A., Dinelli B.M., Wetzel G., Orphal J. Differences in ozone retrieval in MIPAS channels A and AB: A spectroscopic issue // Atmos. Meas. Tech. 2018. V. 11, N 8. P. 4707–4723. DOI: 10.5194/AMT-11-4707-2018.
13. Janssen C., Barbe A., Boursier C., Elandaloussi H., De Backer M.-R., Jeseck P., Miri R., Koshelev D., Marie-Jeanne P., Rouille C., Te Y., Jacquemart D., Tyuterev V. New spectroscopic data for atmospheric remote sensing of ozone from the ultraviolet to the mid-Infrared (MIR) // AGUFM. 2021. V. 2021. P. A33B-08.
14. Flaud J.M., Bacis R. The ozone molecule: Infrared and microwave spectroscopy // Spectrochim. Acta – Part A. Mol. Biomol. Spectrosc. 1998. V. 54, N 1. P. 3–16. DOI: 10.1016/S1386-1425(97)00214-X.
15. Bacis R., Bouvier A.J., Flaud J.M. The ozone molecule: Electronic spectroscopy // Spectrochim. Acta – Part A. Mol. Biomol. Spectrosc. 1998. V. 54, N 1. P. 17–34. DOI: 10.1016/S1386-1425(97)00259-X.
16. Grebenshchikov S.Y., Qu Z.W., Zhu H., Schinke R. New theoretical investigations of the photodissociation of ozone in the Hartley, Huggins, Chappuis, and Wulf bands // Phys. Chem. Chem. Phys. 2007. V. 9, N 17. P. 2044–2064. DOI: 10.1039/B701020F.
17. Drouin B.J., Crawford T.J., Yu S. Validation of ozone intensities at 10 mm with THz spectrometry // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 282–292. DOI: 10.1016/J.JQSRT.2017.06.035.
18. Birk M., Wagner G., Gordon I.E., Drouin B.J. Ozone intensities in the rotational bands // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 226. P. 60–65. DOI: 10.1016/J.JQSRT.2019.01.004.
19. Barbe A., Mikhailenko S., Starikova E., Tyuterev V. High resolution infrared spectroscopy in support of ozone atmospheric monitoring and validation of the potential energy function // Molecules. 2022. V. 27, N 3. P. 911. DOI: 10.3390/MOLECULES27030911.
20. Jacquemart D., Boursier C., Elandaloussi H., Jeseck P., Té Y., Janssen C. Multi-spectral investigation of ozone: Part II. Line intensity measurements at one percent accuracy around 5 mm and 10 mm // J. Quant. Spectrosc. Radiat. Transfer. 2022. V. 279. P. 108050. DOI: 10.1016/J.JQSRT.2021.108050.
21. Tyuterev V.G., Barbe A., Jacquemart D., Janssen C., Mikhailenko S.N., Starikova E.N. Ab initio predictions and laboratory validation for consistent ozone intensities in the MW, 10 and 5 mm ranges // J. Chem. Phys. 2019. V. 150, N 18. P. 184303. DOI: 10.1063/1.5089134.
22. Toon G.C. Ozone Spectroscopy Evaluation Update, JPL NASA, Caltech. 2021. P. 25. URL: https://mark4sun.jpl.nasa.gov/report/O3_Spectroscopy_Eval_2021_07_14.pdf.
23. Tyuterev V.G., Kochanov R.V., Tashkun S.A. Accurate ab initio dipole moment surfaces of ozone: First principle intensity predictions for rotationally resolved spectra in a large range of overtone and combination bands // J. Chem. Phys. 2017. 2017. V. 146. P. 064304. DOI: 10.1063/1.4973977.
24. Vasilchenko S., Barbe A., Starikova E., Kassi S., Mondelain D., Campargue A., Tyuterev V. Detection and assignment of ozone bands near 95% of the dissociation threshold: Ultrasensitive experiments for probing potential energy function and vibrational dynamics // Phys. Rev. A. 2020. V. 102, N 5. P. 052804. DOI: 10.1103/PhysRevA.102.052804.
25. Васильченко С.С., Kassi S., Mondelain D., Campargue A. Лазерная спектроскопия высокого разрешения молекулы озона вблизи порога диссоциации // Оптика атмосф. и океана. 2021. T. 34, № 5. С. 373–380; Vasilchenko S.S., Kassi S., Mondelain D., Campargue A. High-resolution laser spectroscopy of the ozone molecule at the dissociation threshold // Atmos. Ocean. Opt. 2021. V. 34, N 5. P. 373–380.
26. Holka F., Szalay P.G., Müller T., Tyuterev V.G. Toward an improved ground state potential energy surface of ozone // J. Phys. Chem. A. 2010. V. 114, N 36. P. 9927–9935. DOI: 10.1021/jp104182q.
27. Ruscic B. Unpublished results obtained from active thermochemical tables (ATcT) based on the Core (Argonne), Thermochemical Network version 1.110 2010.
28. Egorov O., Kochanov R.V., Tyuterev V., Kokoouline V. Long-range ab initio potential energy surface for the ground electronic state of the ozone molecule with the accurate dissociation asymptote // Chem. Phys. Lett. 2023. V. 830. P. 140819. DOI: 10.1016/J.CPLETT.2023.140819.
29. Freeman D.E., Yoshino K., Esmond J.R., Parkinson W.H. High resolution absorption cross-section measurements of ozone at 195 K in the wavelength region 240–350 nm // Planet. Space Sci. 1984. V. 32, N 2. P. 239–248. DOI: 10.1016/0032-0633(84)90158-2.
30. Bogumil K., Orphal J., Homann T., Voigt S., Spietz P., Fleischmann O.C., Vogel A., Hartmann M., Kromminga H., Bovensmann H., Frerick J., Burrows J.P. Measurements of molecular absorption spectra with the SCIAMACHY pre-flight model: Instrument characterization and reference data for atmospheric remote-sensing in the 230–2380 nm region // J. Photochem. Photo­biol. A. Chem. 2003. V. 157, N 2–3. P. 167–184. DOI: 10.1016/S1010-6030(03)00062-5.
31. Egorov O., Valiev R.R., Kurten T., Tyuterev V. Franck–Condon factors and vibronic patterns of singlet-triplet transitions of 16O3 molecule falling near the dissociation threshold and above // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 273. P. 107834. DOI: 10.1016/J.JQSRT.2021.107834.
32. Daumont D., Brion J., Charbonnier J., Malicet J. Ozone UV spectroscopy I: Absorption cross-sections at room temperature // J. Atmos. Chem. 1992. V. 15, N 2. P. 145–155. DOI: 10.1007/BF00053756/METRICS.
33. Brion J., Chakir A., Daumont D., Malicet J., Parisse C. High-resolution laboratory absorption cross section of O3. Temperature effect // Chem. Phys. Lett. 1993. V. 213, N 5–6. P. 610–612. DOI: 10.1016/0009-2614(93)89169-I.
34. Malicet J., Daumont D., Charbonnier J., Parisse C., Chakir A., Brion J. Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence // J. Atmos. Chem. 1995. V. 21, N 3. P. 263–273. DOI: 10.1007/BF00696758/METRICS.
35. Gorshelev V., Serdyuchenko A., Weber M., Chehade W., Burrows J.P. High spectral resolution ozone absorption cross-sections. Part 1: Measurements, data analysis and comparison with previous measurements around 293 K // Atmos. Meas. Tech. 2014. V. 7, N 2. P. 609–624. DOI: 10.5194/AMT-7-609-2014.
36. Birk M., Wagner G. ESA SEOM-IAS – Measurement and ACS database O3 UV region 2018. DOI: 10.5281/ZENODO.1485588.
37. Hodges J.T., Viallon J., Brewer P.J., Drouin B.J., Gorshelev V., Janssen C., Lee S., Possolo A., Smith M.A.H., Walden J., Wielgosz R.I. Recommendation of a consensus value of the ozone absorption cross-section at 253.65 nm based on a literature review // Metrologia. 2019. V. 56, N 3. P. 034001. DOI: 10.1088/1681-7575/AB0BDD.
38. Bak J., Liu X., Birk M., Wagner G.E., Gordon I., Chance K. Impact of using a new ultraviolet ozone absorption cross-section dataset on OMI ozone profile retrievals // Atmos. Meas. Tech. 2020. V. 13, N 11. P. 5845–5854. DOI: 10.5194/AMT-13-5845-2020.
39. Anderson S.M., Morton J., Mauersberger K. Near-infrared absorption spectra of 16O3 and 18O3: Adiabatic energy of the 1A2 state? // J. Chem. Phys. 1990. V. 93, N 6. P. 3826. DOI: 10.1063/1.458767.
40. Anderson S.M., Mauersberger K. Ozone absorption spectroscopy in search of low-lying electronic states // J. Geophys. Res. Atmos. 1995. V. 100, N D2. P. 3033–3048. DOI: 10.1029/94JD03003.
41. Braunstein M., Pack R.T. Simple theory of diffuse structure in continuous ultraviolet spectra of polyatomic molecules. III. Application to the Wulf–Chappuis band system of ozone // J. Chem. Phys. 1992. V. 96, N 9. P. 6378. DOI: 10.1063/1.462632.
42. Егоров О.В. Диабатические поверхности потенциальной энергии взаимодействующих триплетных состояний 3A2 и 3B1 молекулы озона // Оптика атмосф. и океана. 2023. T. 36, № 3. С. 161–169; Egorov O.V. Diabatic potential energy surfaces of the interacting triplet states 3A2 and 3B1 of the ozone molecule // Atmos. Ocean. Opt. 2023. V. 36, N 4. P. 277–286.
43. Minaev B., Ågren H. The interpretation of the Wulf absorption band of ozone // Chem. Phys. Lett. 1994. V. 217, N 5–6. P. 531–538. DOI: 10.1016/0009-2614(93)E1445-M.
44. Xie D., Guo H., Peterson K.A. Ab initio characterization of low-lying triplet state potential-energy surfaces and vibrational frequencies in the Wulf band of ozone // J. Chem. Phys. 2001. V. 115, N 22. P. 10404–10408. DOI: 10.1063/1.1417502.
45. El Helou Z., Churassy S., Wannous G., Bacis R., Boursey E. Absolute cross sections of ozone at atmospheric temperatures for the Wulf and the Chappuis bands // J. Chem. Phys. 2005. V. 122, N 24. P. 244311. DOI: 10.1063/1.1937369.
46. Chehade W., Gorshelev V., Serdyuchenko A., Burrows J.P., Weber M. Revised temperature-dependent ozone absorption cross-section spectra (Bogumil et al.) measured with the SCIAMACHY satellite spectrometer // Atmos. Meas. Tech. 2013. V. 6, N 11. P. 3055–3065. DOI: 10.5194/AMT-6-3055-2013.
47. Burrows J.P., Richter A., Dehn A., Deters B., Himmelmann S., Voigt S., Orphal J. Atmospheric remote-sensing reference data from GOME-2. Temperature-dependent absorption cross sections of O3 in the 231–794 nm range // J. Quant. Spectrosc. Radiat. Transfer. 1999. V. 61, N 4. P. 509–517. DOI: 10.1016/S0022-4073(98)00037-5.
48. Temperature dependent absorption cross sections measured with the SCIAMACHY satellite spectrometer. URL:https://www.iup.uni-bremen.de/gruppen/molspec/databases/sciamachydata/ index.html (last access: 11.10.2023).
49. Updated SCIAMACHY and GOME-2A FM (FM3) ozone absorption cross-sections. URL: http://www. iup.uni-bremen.de / UVSAT / datasets / sciamachy-and-gome-2a-fm-ozone-absorption-cross-sections (last access: 11.10.2023).
50. Voigt S., Orphal J., Bogumil K., Burrows J.P. The temperature dependence (203–293 K) of the absorption cross sections of O3 in the 230–850 nm region measured by Fourier-transform spectroscopy // J. Photochem. Photobiol. A. Chem. 2001. V. 143, N 1. P. 1–9. DOI: 10.1016/S1010-6030(01)00480-4.
51. Absolutely calibrated ozone absorption cross-sections for 11 temperatures (193–293 K in steps of 10 K) for UV-NIR spectral region. URL: https://www.iup.uni-bremen.de/gruppen/ molspec/databases/referencespectra/o3spectra2011/index.html (last access: 11.10.2023).
52. Inard D., Bouvier A.J., Bacis R., Churassy S., Bohr F., Brion J., Malicet J., Jacon M. Absorption cross-sections and lifetime of the 3A2 “metastable” state of ozone // Chem. Phys. Lett. 1998. V. 287, N 5–6. P. 515–524. DOI: 10.1016/S0009-2614(98)00200-0.
53. Bouvier A.J., Wannous G., Churassy S., Bacis R., Brion J., Malicet J., Judge R.H. Spectroscopy and predissociation of the 3A2 electronic state of ozone 16O3 and 18O3 by high resolution Fourier transform spectrometry // Spectrochim. Acta – Part A. Mol. Biomol. Spectrosc. 2001. V. 57, N 3. P. 561–579. DOI: 10.1016/S1386-1425(00)00409-1.
54. Wachsmuth U., Abel B. Linewidths and line intensity measurements in the weak 3A2(000) ← X1A1(000) band of ozone by pulsed cavity ringdown spectroscopy // J. Geophys. Res. D. Atmos. 2003. V. 108, N 15. P. 4473. DOI: 10.1029/2002jd003126.
55. Lapierre D., Alijah A., Kochanov R., Kokoouline V., Tyuterev V. Lifetimes and wave functions of ozone metastable vibrational states near the dissociation limit in a full-symmetry approach // Phys. Rev. A. 2016. V. 94, N 4. P. 042514. DOI: 10.1103/PhysRevA.94.042514.
56. Васильченко С.С., Егоров О.В., Тютерев В.Г. Эксперимент по регистрации поглощения озона при переходах в триплетное электронное состояние 3А2 высокочувствительным методом лазерной спектроскопии внутрирезонаторного затухания в интервале 9350–10000 см-1 // Оптика атмосф. и океана. 2022. T. 35, № 12. С. 971–978. DOI: 10.15372/AOO20221201; Vasilchenko S.S., Egorov O.V., Tyuterev V.G. Experiment on recording ozone absorption transitions to 3A2 triplet electronic state by high-sensitivity cavity ring-down spectroscopy in the range 9350–10000 cm-1 // Atmos. Ocean. Opt. 2023. V. 36, N 3. P. 191–198. DOI: 10.1134/S1024856023030193/METRICS.
57. Vasilchenko S.S., Solodov A.A., Egorov O.V., Tyuterev V.G. Accurate absolute absorption cross-sections of the ozone Wulf bands at 1 mm range: Measurements with high-resolution and highly sensitive cw-CRDS laser technique // J. Quant. Spectrosc. Radiat. Transfer. 2024. V. 312. P. 108817. DOI: 10.1016/j.jqsrt.2023.108817.
58. Herriott D., Kogelnik H., Kompfner R. Off-axis paths in spherical mirror interferometers // Appl. Opt. 1964. V. 3, N 4. P. 523–526. DOI: 10.1364/AO.3.000523.
59. Griggs M. Absorption coefficients of ozone in the ultraviolet and visible regions // J. Chem. Phys. 1968. V. 49, N 2. P. 857–859. DOI: 10.1063/1.1670152.
60. Vasilchenko S., Mondelain D., Kassi S., Campargue A. Predissociation and pressure dependence in the low frequency far wing of the Wulf absorption band of ozone near 1.2 mm // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 4. P. 107678. DOI: 10.1016/j.jqsrt.2021.107678.
61. Vasilchenko S., Campargue A., Kassi S., Mondelain D. The water vapour self- and foreign-continua in the 1.6 and 2.3 mm windows by CRDS at room temperature // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 227. P. 230–238. DOI: 10.1016/j.jqsrt.2019.02.016.
62. Judge R.H., Womeldorf E.D., Morris R.A., Shimp D.E., Clouthier D.J., Joo D.L., Moule D.C. Computer-assisted analysis of singlet-triplet rotational spectra: Application to case (A), case (B) and case (AB) coupling cases in polyatomic molecules // Comput. Phys. Commun. 1996. V. 93, N 2–3. P. 241–264. DOI: 10.1016/0010-4655(95)00087-9.
63. Arosio C., Rozanov A., Gorshelev V., Laeng A., Burrows J.P. Assessment of the error budget for stratospheric ozone profiles retrieved from OMPS limb scatter measurements // Atmos. Meas. Tech. 2022. V. 15, N 20. P. 5949–5967. DOI: 10.5194/AMT-15-59492022.