Vol. 27, issue 05, article # 5

Zaitsev N.A., Timofeev Yu.M., Kostsov V.S. Intercomparison of radiosonde and ground-based remote measurements of temperature profiles in the troposphere. // Optika Atmosfery i Okeana. 2014. V. 27. No. 05. P. 392-398 [in Russian].
Copy the reference to clipboard
Abstract:

The ground-based experiment on microwave temperature sounding of the troposphere by the RPG-HATPRO instrument performed at the Faculty of Physics, St.Petersburg State University, since June 2012 is described. On the basis of intercomparison of the results with radiosonde data the estimates have been obtained of the temperature retrieval errors for the algorithm which was developed by the manufacturer of the instrument. The errors have been compared with corresponding values for similar instruments functioning abroad. The conclusion has been made about the necessity to develop specialized algorithms and data processing procedures which include adaptation and correction of algorithms accounting for peculiarities of specific instrument and experimental conditions.

Keywords:

ground-based microwave remote sensing, tropospheric temperature

References:

1. Naumov A.P., Osharina H.H., Troickij A.B. Nazemnoe termicheskoe zondirovanie atmosfery v mikrovolnovom diapazone // Izv. vuzov. Radiofiz. 1999. V. 42, N 1. P. 45–59.
2. Karashtin D.A., Muhin D.N., Skalyga N.K., Fejgin A.M. Bajesov podhod k vosstanovleniju vertikal'nogo profilja temperatury stratosfery po dannym nazemnyh izmerenij solnechnogo izluchenija v millimetrovyh linijah pogloshhenija molekuljarnogo kisloroda // Izv. vuzov. Radiofiz. 2009. V. 52, N 10. P. 785–794.
3. Karashtin D.A., Muhin D.N., Skalyga N.K., Fejgin A.M. Vosstanovlenie vertikal'nogo profilja temperatury stratosfery po dannym nazemnyh izmerenij spektra sobstvennogo izluchenija atmosfery v millimetrovyh linijah pogloshhenija molekuljarnogo kisloroda // Izv. RAN. Ser. fiz. 2009. V. 73, N 12. P. 1750–1755.
4. Shvecov A.A., Fedoseev L.I., Karashtin D.A., Bol'shakov O.S., Muhin D.N., Skalyga N.K., Fejgin A.M. Izmerenie profilja temperatury srednej atmosfery s pomoshh'ju nazemnogo spektroradiometricheskogo kompleksa // Izv. vuzov. Radiofiz. 2010. V. 53, N 5–6. P. 356–361.
5. Crewell S., Lohnert U. Accuracy of Boundary Layer Temperature Profiles Retrieved with Multifrequency Multiangle Microwave Radiometry // IEEE Trans. Geosci. Remote Sens. 2007. V. 45, N 7. P. 2195–2201.
6. Pernigotti D., Rossa A.M., Ferrario M.E., Sansone M., Benassi A. Influence of ABL stability on the diurnal cycle of PM10 concentration: illustration of the potential of the new Veneto network of MW-radiometers and SODAR // Meteorol. Zeitschrift. 2007. V. 16, N 5. P. 505–511.
7. Kadygrov E.N. Mikrovolnovaja radiometrija atmosfernogo pogranichnogo sloja – metod, apparatura, rezul'taty izmerenij // Optika atmosf. i okeana. 2009. V. 22, N 7. P. 697–704.
8. Kadygrov E.N., Gorelik A.G., Miller E.A., Nekrasov V.V., Troickij A.V., Tochilkina T.A., Shaposhnikov A.N. Rezul'taty monitoringa termodinamicheskogo sostojanija troposfery mnogokanal'nym mikrovolnovym radiometricheskim kompleksom // Optika atmosf. i okeana. 2013. V. 26, N 6. P. 459–465.
9. Rose T., Crewell S., Lohnert U., Simmer C. A network suitable microwave radiometer for operational monitoring of the cloudy atmosphere // Atmos. Res. 2005. V. 75, N 3. P. 183–200.
10. MWRnet – An International Network of Ground-Based Microwave Radiometers. [Jelektronnyj resurs] / Rezhim dostupa: http://cetemps. aquila.infn.it/mwrnet/ svobodnyj. Zagl. s jekrana.
11. Haobo Tan, Jietai Mao, Huanhuan Chen, Chan P.W., Dui Wu, Fei Li, Tao Deng. A Study of a Retrieval Method for Temperature and Humidity Profiles from Microwave Radiometer Observations Based on Principal Component Analysis and Stepwise Regression // J. Atmos. Ocean. Technol. 2011. V. 28, N 3. P. 378–389.
12. Radiometer Physics GmbH [Jelektronnyj resurs] / Rezhim dostupa: http://www.radiometer-physics.de/rpg/ html/Home.html svobodnyj. Zagl. s jekrana.
13. Koscov V.S., Poberovskij A.V., Osipov S.I., Timofeev Ju.M. Kompleksnaja metodika interpretacii nazemnyh mikrovolnovyh spektral'nyh izmerenij v zadache opredelenija vertikal'nogo profilja soderzhanija ozona // Optika atmosf. i okeana. 2012. V. 25, N 4. P. 354–360.
14. Lohnert U., Maier O. Operational profiling of temperature using ground-based microwave radiometry at Payerne: prospects and challenges // Atmos. Meas. Technol. 2012. V. 5, N 5. P. 1121–1134.
15. University of Wyoming. College of Engineering. Department of Atmospheric Science. Weather [Электронный ресурс] / Режим доступа: http://weather.uwyo.edu/ upperair/sounding.html свободный. Загл. с экрана.
16. Guldner J., Spankuch D. Remote Sensing of the Thermodynamic State of the Atmospheric Boundary Layer by Ground-Based Microwave Radiometry // J. Atmos. Ocean. Technol. 2001. V. 18, N 6. P. 925–933.
17. Cimini D., Hewison T.J., Martin L., Guldner J., Gaffard C., Marzano F.S. Temperature and humidity profile retrievals from ground-based microwave radiometers during TUC // Meteorol. Zeitschrift. 2006. V. 15, N 5. P. 45–56.
18. RC SPbGU «Geomodel'». [Jelektronnyj resurs] / Rezhim dostupa: http://geomodel.spbu.ru/ svobodnyj. Zagl. s jekrana.

Back