Vol. 27, issue 05, article # 6

Marichev V.N., Bochkovskii D.A. The study of possibilities of lidar measurements of the Earth atmosphere temperature from the space. // Optika Atmosfery i Okeana. 2014. V. 27. No. 05. P. 399-406 [in Russian].
Copy the reference to clipboard

In the article, the analysis of lidar measurements of atmospheric temperature in the UV spectral region from the international space station was performed. As a lidar transmitter, a solid Nd:YAG laser with 3 and 4 harmonics radiation (wavelengths of 355 and 266 nm) was taken. Using a lidar operating at 355 nm with the available parameters at the 10% level of measurement error, the altitude range from 20 to 70 km at night (the calculations were not carried out below) can be covered. For a small field of view of a receiving aperture of about 0.1 mrad and narrow-bandwidth filters of about 1 nm, temperature measurements are implementable in the range 20–40 km during the day and 20–70 km at twilight time.
Despite the large signals obtained at a wavelength of 266 nm, its use is not possible due to the influence of lidar radiation absorption by ozone. The latter, when calculating the temperature from the measured lidar signals due to the systematic errors, leads to its false deviations from the actual values.


space, atmosphere, space apparatus (spacecraft), lidar, vertical distribution of temperature


1. Schoeberl M.R., Douglass A.R., Hilsenrath E., Bhartia P.K., Beer R., Waters J.W., Gunson M.R., Froidevaux L., Gille J.C., Barnett J.J., Levelt P.F., DeCola P. Overview of the EOS Aura Mission // IEEE Trans. Geosci. Remote Sens. 2006. N 5. P. 1066–1074.
2. Zuev V.V., Marichev V.N., Bondarenko S.L. Lidarnye izmerenija temperatury po rjeleevskomu rassejaniju sveta v nizhnej stratosfere za period maj–dekabr' 1995 year. // Optika atmosf. i okeana. 1996. V. 9, N 10. P. 1386–1393.
3. Hauchecorne A., Chanin M.-L. Density and temperature profiles obtained by lidar between 35 and 75 km // Geophys. Res. Lett. 1980. V. 7, N 8. Р. 565–568.
4. Thomas L. Laser structure and compositions // Phil. Trans. Roy. Soc. London. A. 1987. V. 323. Р. 597–609.
5. Russell Ph.C. Lidar profiles of atmospheric structure properties // Proc. SPIE. 1991. V. 1492. P. 76–83.
6. Hinkley E.D. Laser monitoring the atmosphere. Berlin; Heidelberg; New York: Springer-Verlag, 1976. 380 р.
7. Cooney J.A. Measurements on the Raman component of laser atmospheric backscatter // Appl. Phys. Lett. 1968. V. 12, N 40. P. 40–42.
8. Arshinov Ju.F. Izmerenie temperatury atmosfery lidarom po vrashhatel'nym spektram KR N2 i O2 // Spektroskopicheskie metody zondirovanija atmosfery. Novosibirsk: Nauka, 1985. P. 94–107.
9. Strauch R.G., Derr V.E., Cupp R.E. Atmospheric temperature measurement using Raman backscattering // Appl. Opt. 1971. N 10. P. 2665–2669.
10. Melfi S.H. Comparison of raman lidar and radiosonde measurements of atmospheric moisture and temperature profiles // Ibid. Р. 230–233.
11. Third International Lidar Researchers Directory / Compled by M.P. McCormick. NASA Langley Rescarch Center. Hampton Virginia, 23681-0001. 1993.
12. Zuev V.V., Marichev V.N., Bondarenko S.L., Dolgij S.I., Sharabarin E.V. Predvaritel'nye rezul'taty zondirovanija temperatury v troposfere SKR-lidarom na pervom kolebatel'no-vrashhatel'nom perehode molekul azota // Optika atmosf. i okeana. 1996. V. 9. N 12. P. 1609–1611.
13. Zuev V.V., Marichev V.N., Dolgij S.I., Sharabarin E.V. Lidarnyj kompleks dlja izmerenija sostavljajushhih i parametrov atmosfery // Kratkie tezisy dokl. III Mezhrespubl. simpoz. «Optika atmosf. i okeana ». Tomsk, 1996. P. 211–212.
14. Mason J. Lidar measurement of temperature. A new approach // Appl. Opt. 1975. V. 14, N 1. Р. 76–78.
15. Samohvalov I.V., Kopytin Ju.D., Zuev V.V. Lazernoe zondirovanie troposfery i podstilajushhej poverhnosti. Novosibirsk: Nauka, 1987. 262 p.
16. Bills R.E., Gardner C.S., Franke S.J. Na Doppler/temperature lidar: initial mesopause region observations and comparison with the urbana medium frequency radar // J. Geophys. Res. D. 1991. V. 96, N 12. P. 22701–22707.
17. Gelbwachs J.A. Iron Boltzman Factor LIDAR: proposed new remote-sensing technique for mesospheric temperature // Appl. Opt. 1994. V. 33, N 30. P. 7151–7156.
18. Marichev V.N., Bochkovskij D.A. Lidarnye izmerenija plotnosti vozduha v srednej atmosfere. Part 1. Modelirovanie potencial'nyh vozmozhnostej pri zondirovanii v vidimoj oblasti spektra // Optika atmosf. i okeana. 2013. V. 26, N 7. P. 553–563.
19. Marichev V.N., Bochkovskij D.A. Lidarnye izmerenija plotnosti vozduha v srednej atmosfere. Part 2. Modelirovanie potencial'nyh vozmozhnostej pri zondirovanii v UF- oblasti spektra // Optika atmosf. i okeana. 2013. V. 26, N 8. P. 701–704.
20. Ippolitov I.I., Komarov V.S., Micel' A.A. Optikometeorologicheskaja model' atmosfery dlja modelirovanija lidarnyh izmerenij i rascheta rasprostranenija radiacii // Spektrometricheskie metody zondirovanija atmosfery. Novosibirsk: Nauka, 1985. P. 4–44.
21. Dozier J. A clear-sky spectral solar radiation model for snow-covered mountainous terrain // Water Recour. Res. 1980. V. 16, N 4. P. 709–718.
22. URL: http://about-space.ru/rasseyanscet?start=41
23. Zuev V.E., Komarov V.S. Statisticheskie modeli temperatury i gazovyh komponent atmosfery. L.: Gidrometeoizdat, 1986. 264 p.
24. Molina L.T., Molina M.J. Absolute absorption cross sections of ozone in the 185–150 nm wavelength range // J. Geophys. Res. 1986. V. 91, N 13. P. 14501–14508.