Vol. 27, issue 05, article # 1

Lukin I.P. Stability of coherent vortex Bessel beams during propagation in turbulent atmosphere. // Optika Atmosfery i Okeana. 2014. V. 27. No. 05. P. [in Russian].
Copy the reference to clipboard

The question of stability of the vortex Bessel beams formed in turbulent atmosphere is theoretically considered. In the given research, characteristics of spatial structure of distribution of mean intensity of vortex Bessel beams in an inhomogeneous medium are analyzed in detail. The quantitative criterion of possibility of formation of vortex Bessel beams in turbulent atmosphere is derived. On the basis of the analysis of behavior of several physical parameters of mean intensity of optical radiation it is shown that the stability of the form of a vortex Bessel beam during propagation in turbulent atmosphere increases with an increase of the value of a topological charge of this beam.


Bessel beam, vortex beam, optical radiation, atmospheric turbulence, mean intensity


1. Andrews D.L. Structured light and its applications: An introduction to phase-structured beams and nanoscale optical forces. N.Y.: Academic Press, 2008. 341 p.
2. Andreev N.E., Margolin L.Ja., Pleshanov I.V., Pjatnickij L.N. Trubchatye puchki jelektromagnitnogo izluchenija: formirovanie i nelinejnoe rasprostranenie v plazme // Zh. jeksperim. i teor. fiz. 1994. V. 105, issue 5. P. 1232–1241.
3. Arlt J., Dholakia K. Generation of high-order Bessel beams by use of an axicon // Opt. Commun. 2000. V. 177, N 1–6. P. 297–301.
4. Коронкевич В.П., Харисов А.А., Гейл М.Т., Шутц Х. Многопорядковые дифракционные линзы для формирования бесселевых пучков // Автометрия. 1996. N 5. P. 38–43.
5. Vasara A., Turunen J., Friberg A.T. Realization of general nondiffracting beams with computer-generated holograms // J. Opt. Soc. Amer. A. 1989. V. 6, N 11. P. 1748–1754.
6. Eyyuboğlu H.T. Propagation of higher order Bessel–Gaussian beams in turbulence // Appl. Phys. B. 2007. V. 88, N 2. P. 259–265.
7. Chen B., Chen Z., Pu J. Propagation of partially coherent Bessel–Gaussian beams in turbulent atmosphere // Opt. & Laser Technol. 2008. V. 40, N 6. P. 820–827.
8. Zhu K., Zhou G., Li X., Zheng X., Tang H. Propagation of Bessel–Gaussian beams with optical vortices in turbulent atmosphere // Opt. Express. 2008. V. 16, N 26. P. 21315–21320.
9. Eyyuboğlu H.T., Sermutlu E., Baykal Y., Cai Y., Korotkova O. Intensity fluctuations in J-Bessel–Gaussian beams of all orders propagating in turbulent atmosphere // Appl. Phys. B. 2008. V. 93, N 2–3. P. 605–611.
10. Eyyuboğlu H.T., Hardalac F. Propagation of modified Bessel–Gaussian beams in turbulence // Opt. & Laser Technol. 2008. V. 40, N 2. P. 343–351.
11. Chen B., Pu J. Propagation of Gauss–Bessel beams in turbulent atmosphere // Chin. Phys. B. 2009. V. 18, N 3. P. 1033–1039.
12. Lukin I.P. Coherence of the higher modes of Bessel beams in turbulent atmosphere // Proc. SPIE. 2012. V. 8696. 86960A. P. 1–6.
13. Lukin I.P. Formation of a ring dislocation of a coherence of a vortex optical beam in turbulent atmosphere // Proc. SPIE. 2013. V. 9066. 90660Q. P. 1–10.
14. Рытов С.М., Кравцов Ю.А., Татарский В.И. Введение в статистическую радиофизику. Part 2. Случайные поля. М.: Наука, 1978. 464 p.
15. Lukin I.P. Kogerentnost' besseleva puchka v turbulentnoj atmosfere // Optika atmosf. i okeana. 2012. V. 25, N 5. P. 393–402.