Content of issue 11, volume 32, 2019

  1. Veretennikov V.V., Men'shchikova S.S., Uzhegov V.N. Variability of the aerosol microstructure under the forest fire smoke effect retrieved from spectral characteristics of light extinction in the near-surface air layer and the atmospheric column. P. 879-888
    Bibliographic reference:
    Veretennikov V.V., Men'shchikova S.S., Uzhegov V.N. Variability of the aerosol microstructure under the forest fire smoke effect retrieved from spectral characteristics of light extinction in the near-surface air layer and the atmospheric column. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 879-888 [in Russian].
    Copy the reference to clipboard
  2. Luzhetskaya A.P., Poddubnyi V.A. Features of temporal variability of aerosol optical depth in the Middle Urals according to long-term observations at the urban and background sites. P. 889-895
    Bibliographic reference:
    Luzhetskaya A.P., Poddubnyi V.A. Features of temporal variability of aerosol optical depth in the Middle Urals according to long-term observations at the urban and background sites. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 889-895 [in Russian].
    Copy the reference to clipboard
  3. RomanovskiI O.A., Sadovnikov S.A., Kharchenko O.V., Yakovlev S.V. Remote analysis of methane content in the atmosphere by an IR DIAL lidar system in the 3300–3430-nm spectral range. P. 896–901
    Bibliographic reference:
    RomanovskiI O.A., Sadovnikov S.A., Kharchenko O.V., Yakovlev S.V. Remote analysis of methane content in the atmosphere by an IR DIAL lidar system in the 3300–3430-nm spectral range. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 896–901 [in Russian].
    Copy the reference to clipboard
  4. Tartakovsky V.A., Cheredko N.N., Maksimov V.G. Calculation of mid-latitude temperature by linear transformation of astronomical insolation. P. 902–907
    Bibliographic reference:
    Tartakovsky V.A., Cheredko N.N., Maksimov V.G. Calculation of mid-latitude temperature by linear transformation of astronomical insolation. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 902–907 [in Russian].
    Copy the reference to clipboard
  5. Pustovalov K.N., Kharyutkina E.V., Korolkov V.A., Nagorsky P.M. Variability in resources of solar and wind energy in the Russian sector of Arctic. P. 908–914
    Bibliographic reference:
    Pustovalov K.N., Kharyutkina E.V., Korolkov V.A., Nagorsky P.M. Variability in resources of solar and wind energy in the Russian sector of Arctic. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 908–914 [in Russian].
    Copy the reference to clipboard
  6. Alexeeva M.N., Raputa V.F., Yaroslavtseva T.V., Yashchenko I.G. Estimation of atmospheric pollution from gas flaring according to data of remote observations of flare thermal radiation. P. 915–919
    Bibliographic reference:
    Alexeeva M.N., Raputa V.F., Yaroslavtseva T.V., Yashchenko I.G. Estimation of atmospheric pollution from gas flaring according to data of remote observations of flare thermal radiation. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 915–919 [in Russian].
    Copy the reference to clipboard
  7. Peremitina T.O., Yashchenko I.G. Evaluation of the vegetation dynamics of oil and gas deposits in Tomsk region with the use of satellite data. P. 920–924
    Bibliographic reference:
    Peremitina T.O., Yashchenko I.G. Evaluation of the vegetation dynamics of oil and gas deposits in Tomsk region with the use of satellite data. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 920–924 [in Russian].
    Copy the reference to clipboard
  8. Shishigin S.A. Investigation of the method for correction of gas content in air by the outgoing radiation of the atmosphere. P. 925–929
    Bibliographic reference:
    Shishigin S.A. Investigation of the method for correction of gas content in air by the outgoing radiation of the atmosphere. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 925–929 [in Russian].
    Copy the reference to clipboard
  9. Karavaev D.M., Shchukin G.G. Study on variations in water vapor and cloud liquid using microwave radiometry. P. 930–935
    Bibliographic reference:
    Karavaev D.M., Shchukin G.G. Study on variations in water vapor and cloud liquid using microwave radiometry. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 930–935 [in Russian].
    Copy the reference to clipboard
  10. Rubinshtein K.G., Gubenko I.M., Ignatov R.Yu., Tikhonenko N.D., Yusupov Yu.I. Experiments on lightning data assimilation gathered from lightning detection network. P. 936–941
    Bibliographic reference:
    Rubinshtein K.G., Gubenko I.M., Ignatov R.Yu., Tikhonenko N.D., Yusupov Yu.I. Experiments on lightning data assimilation gathered from lightning detection network. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 936–941 [in Russian].
    Copy the reference to clipboard
  11. Krivenok L.A., Suvorov G.G., Avilov V.K., Sirin A.A. Eddy covariance measurement of CO2, CH4, and H2O fluxes: Use of a mobile tower and taking into account the changing fetch. P. 942–950
    Bibliographic reference:
    Krivenok L.A., Suvorov G.G., Avilov V.K., Sirin A.A. Eddy covariance measurement of CO2, CH4, and H2O fluxes: Use of a mobile tower and taking into account the changing fetch. // Optika Atmosfery i Okeana. 2019. V. 32. No. 11. P. 942–950 [in Russian].
    Copy the reference to clipboard
  12. Information. P. 951–954