Vol. 33, issue 07, article # 6

Nikitenko A. A., Timofeev Yu. M., Berezin I. A., Virolainen Ya. A., Polyakov A. V. The analysis of OCO-2 satellite measurements of CO2 in the vicinity of Russian cities. // Optika Atmosfery i Okeana. 2020. V. 33. No. 07. P. 538–543. DOI: 10.15372/AOO20200706 [in Russian].
Copy the reference to clipboard


CO2 spatial and temporal variability in five Russian regions has been analyzed on the basis of OCO-2 satellite measurements (more than 300 days during 4.5 years, more than 50 000 measurements). The Orbiting Carbon Observatory-2 (OCO-2) allows measurements of CO2 content with a high accuracy (0.25–0.5%) (for data with a quality flag “0”), a high horizontal resolution (1.29 ´ 2.25 км2), and a spatial coverage along paths of ~ 10 km. That makes it possible to analyze the spatial and temporal variations in CO2 column-averaged dry-air mole fractions (XCO2). XCO2 OCO-2 data with quality flag “1” has lower measurement accuracy, but the number of such measurements is 5–10 times greater than that with quality flag “0”. XCO2 satellite measurements with quality flag “0” in the vicinity of Moscow, Saint Petersburg, Yekaterinburg, Magnitogorsk, and Norilsk (circles with a radius of 100 km from the city centers) have been analyzed. Comparisons of the meaurements in different cities and regions show that XCO2 datasets with a quality flag “0” are homogeneous, the amplitude of XCO2 variations amounts to 5–6%, root mean square variations are less than 1%. The maximum values of XCO2 spatial variations totals 2–4%, which differs significantly from the results of the analysis of OCO-2 XCO2 data with quality flag “1”.


spatial-temporal variability of carbon dioxide, OCO-2 satellite, XCO2 variations, XCO2 data with a quality flag “0”, XCO2 data with a quality flag “1”


1. IPCC, 2014: Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / R.K. Pachauri, L.A. Meyer (eds.). IPCC, Geneva, Switzerland, 151 pp. URL: https://www. ipcc.ch/site/assets/uploads/2018/05/SYR_AR5_FINAL_full_wcover.pdf (la st access: 22.07.2019).
2. Hopkins F.M., Ehleringer J.R., Bush S.E., Duren R.M., Miller C.E., Lai C.-T., Hsu Y.-K., Carranza V., Randerson J.T. Mitigation of methane emissions in cities: How new measurements and partnerships can contribute to emissions reduction strategies // Earth’s Future. 2016. V. 4. P. 408–425.
3. Zhao X., Marshall J., Hachinger S., Gerbig C., Frey M., Hase F., Chen J. Analysis of total column CO2 and CH4 measurements in Berlin with WRF-GHG // Atmos. Chem. Phys. 2019. V. 19. P. 11279–11302.
4. Wunch D., Toon G.C., Blavier J.F.L. et al. The total carbon column observing network // Philos. Trans. R. Soc. A. 2011. V. 369. P. 2087–2112.
5. Satellite Missions Database [Electronic resource]. URL: https://directory.eoportal.org/web/eoportal/satellite-missions/ (last access: 25.01.2020).
6. Arshinov M.Yu., Belan B.D., Davydov D.K., Krekov G.M., Fofonov A.V., Babchenko S.V., Inoue G., Machida T., Maksutov Sh.Sh., Sasakawa Motoki, Shimoyama Ko. Dinamika vertikal'nogo raspredeleniya parnikovyh gazov v atmosfere // Optika atmosf. i okeana. 2012. V. 25, N 12. P. 1051–1061.
7. Hakkarainen J., Ialongo I., Tamminen J. Direct space-based observations of anthropogenic CO2 emission areas from OCO-2 // Geophys. Res. Lett. 2016. V. 43. P. 11,400–11,406. DOI: 10.1002/2016GL070885.
8. Timofeev Yu.M., Berezin I.A., Virolajnen Ya.A., Makarova M.V., Polyakov A.V., Poberovskij A.V., Filippov N.N., Foka S.Ch. Prostranstvenno-vremennye variatsii soderzhaniya CO2 po dannym sputnikovyh i nazemnyh izmerenij vblizi Sankt-Peterburga // Izv. RAN. Fizika Физика атмосф. и океана. 2019. V. 55, N 1. P. 65–72.
9. Timofeev Yu.M., Berezin I.A., Virolajnen Ya.A., Makarova M.V., Nikitenko A.A. Analiz mezomasshtabnyh variatsij soderzhaniya uglekislogo gaza vblizi megapolisa Moskvy po sputnikovym dannym // Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2019. V. 16, N 4. P. 263–270. DOI: 10.21046/2070-7401-2019-16-4-263-270.
10. Timofeev Yu.M., Berezin I.A., Virolajnen Ya.A., Makarova M.V., Polyakov A.V. Otsenki antropogennyh emissij CO2 Moskvy i Sankt-Peterburga po sputnikovym izmereniyam OSO-2 // Optika atmosf. i okeana. 2020. V. 33, N 4. P. 261–265.
11. Jet Propulsion Laboratory. California Institute of Technology [Electronic resource]. URL: https://ocov2.jpl.nasa.gov/ (last access: 25.01.2020).
12. Orbiting Carbon Observatory-2 Launch (Press Kit) // NASA. 2015. URL: https://www.jpl.nasa.gov/news/ press_kits/oco2-launch-press-kit.pdf (last access: 25.01.2020).
13. Eldering A., O’Dell C.W., Wennberg P.O., Crisp D., Gunson M.R., Viatte C., Avis C., Braverman A., Castano R., Chang A., Chapsky L., Cheng C., Connor B., Dang L., Doran G., Fisher B., Frankenberg C., Fu D., Granat R., Hobbs J., Lee R.A.M., Mandrake L., McDuffie D., Miller C.E., Myers V., Natraj V., O’Brien D., Osterman D.B., Oyafuso F., Payne V.H., Pollock H.R., Polonsky I., Roehl C.M., Rosenberg R., Schwandner F., Smyth M., Tang V., Taylor T.E., To C., Wunch D., Yoshimizu J. The Orbiting Carbon Observatory-2: First 18 months of science data products // Atmos. Meas. Tech. 2017. V. 10. P. 549–563. DOI: 10.5194/amt-10-549-2017.
14. Wunch D., Wennberg P.O., Osterman G., Fisher B., Naylor B., Roehl C.M., O’Dell C., Mandrake L., Viatte C., Kiel M., Griffith D.W.T., Deutscher N.M., Velazco V.A., Notholt J., Warneke T., Petri C., De Maziere M., Sha M.K., Sussmann R., Rettinger M., Pollard D., Robinson J., Morino I., Uchino O., Hase F., Blumenstock T., Feist D.G., Arnold S.G., Strong K., Mendonca J., Kivi R., Heikkinen P., Iraci L., Podolske J., Hillyard P.W., Kawakami S., Dubey M.K., Parker H.A., Sepulveda E., García O.E., Te Y., Jeseck P., Gunson M.R., Crisp D., Eldering A. Comparisons of the Orbiting Carbon Observatory-2 (OCO-2) XCO2 measurements with TCCON // Atmos. Meas. Tech. 2017. V. 10. P. 2209–2238.
15. Barthlott S., Schneider M., Hase F., Wiegele A., Christner E., González Y., Blumenstock T., Dohe S., García O.E., Sepúlveda E., Strong K., Mendonca J., Weaver D., Palm M., Deutscher N.M., Warneke T., Notholt J., Lejeune B., Mahieu E., Jones N., Griffith D.W.T., Velazco V.A., Smale D., Robinson J., Kivi R., Heikkinen P., Raffalski U. Using XCO2 retrievals for assessing the long-term consistency of NDACC/FTIR data sets // Atmos. Meas. Tech. 2015. V. 8. P. 1555–1573.
16. Liang A., Gong W., Han G., Xian C. Comparison of satellite-observed XCO2 from GOSAT, OCO-2, and ground-based TCCON // Remote Sesing. 2017. V. 9. P. 1033. DOI: 10.3390/rs9101033.
17. Foka S.Ch., Makarova M.V., Poberovskij A.V., Timofeev Yu.M. Vremennye variatsii kontsentratsii SO2, SN4 i SO v prigorode Sankt-Peterburga (Petergof) // Optika atmosf. i okeana. 2019. V. 32, N 10. P. 860–866.
18. Timofeyev Yu., Virolainen Ya., Makarova M., Poberovsky A., Polyakov A., Ionov D., Osipov S., Imhasin H. Ground-based spectroscopic measurements of atmospheric gas composition near Saint Petersburg (Russia) // J. Mol. Spectrosc. 2016. V. 323. P. 2–14. DOI: 10.1016/j.jms.2015.12.007.
19. Timofeev Yu.M., Polyakov A.V., Virolajnen Ya.A., Makarova M.V., Ionov D.V., Poberovskij A.V., Imhasin H.H. Otsenki trendov soderzhaniya klimaticheski vazhnyh atmosfernyh gazov vblizi Sankt-Peterburga // Izv. RAN. Fiz. atmosf. i okeana. 2020. V. 56, N 1. P. 97–103. DOI: 10.1134/S0002351520010083).