Vol. 33, issue 07, article # 4

Shishko V. A., Konoshonkin A. V., Kustova N. V., Timofeev D. N. Light scattering on spherical particles for lidar applications. // Optika Atmosfery i Okeana. 2020. V. 33. No. 07. P. 522–528. DOI: 10.15372/AOO20200704 [in Russian].
Copy the reference to clipboard


The solution to the problem of light scattering by spherical particles is presented, adapted for the interpretation of lidar signals for applied problems. The solution was obtained for typical wavelengths used in laser sensing 0.355, 0.532, 0.905, 0.940, 1.064, 1.55, 2.15, and 10.6 mm within the Mie scattering theory for water and ice. The inherent high-frequency oscillations in the backscattering direction are smoothed out by means of a moving average, which allows one to construct fast and efficient algorithms for particle size distributions observed in the atmosphere.


light scattering, spherical particles, ice, water, laser sensing, lidar


  1. Wandinger U., Müller D., Böckmann C., Althausen D., Matthias V., Bösenberg J., Weiß V., Fiebig M., Wendisch M., Stohl A., Ansmann A. Optical and microphysical characterization of biomass-burning and industrial-pollution aerosols from multiwavelength lidar and aircraft measurements // J. Geophys. Res.: Atmos. Am. Geophys. Union. D. 2002. V. 107, N 21. P. LAC7-1–20. DOI: 10.1029/2000JD000202.
  2.  Matvienko G.G., Suhanov A.Ya., Babchenko S.V. Analiz vozmozhnostej nejronnyh setej pri IPDA kosmicheskom zondirovanii CO2 s privlecheniem raznorodnyh apriornyh dannyh // Optika atmosf. i okeana. 2018. V. 31, N 12. P. 974–980; Matvienko G.G., Sukhanov A.Ya., Babchenko S.V. The analysis of capabilities of neural networks in CO2 sounding with spaceborne IPDA-lidar with the use of different a priori data // Atmos. Ocean. Opt. 2019. V. 32, N 2. P. 165–170.
  3. Bissonnette L.R., Hutt D.L. Multiply scattered aerosol lidar returns: Inversion method and comparison with in situ measurements // Appl. Opt. 1995. V. 34, N 30. P. 6959. DOI: 10.1364/AO.34.006959.
  4. Bo Guangyu, Liu Dong, Wu Decheng, Wang Bangxin, Zhong Zhiqing, Xie Chenbo, Zhou Ju. Two-wavelength lidar for observation of aerosol optical and hygroscopic properties in fog and haze days // Chin. J. Lasers. 2014. V. 41, N 1. P. 113001. DOI: 10.3788/CJL201441.0113001.
  5. Klimkin A.V., Karapuzikov A.A., Kohanenko G.P., Kuryak A.N., Osipov K.Yu., Ponomarev Yu.N., Chzhan Sho. Ispol'zovanie dlinnovolnovogo diapazona dlya distantsionnogo zondirovaniya atmosfernogo aerozolya // Optika atmosf. i okeana. 2020. V. 33, N 3. P. 205–208.
  6. Kim I.I., McArthur B., Korevaar E.J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications // Proc. SPIE. 2001. DOI: 10.1117/12.417512.
  7. Fu Q., Sun W.B., Yang P. Modeling of Scattering and Absorption by Nonspherical Cirrus Ice Particles at Thermal Infrared Wavelengths // J. Atmos. Sci. Am. Meteorol. Soc. 1999. V. 56, N 16. P. 2937–2947. DOI: 10.1175/1520-0469(1999)056<2937:MOSAAB>2.0.CO;2.
  8. Nevzorov A.V., Dolgij S.I., Makeev A.P., El'nikov A.V. Rezul'taty lidarnyh nablyudenij aerozolya ot lesnyh pozharov Severnoj Ameriki v stratosfere nad Tomskom v kontse leta i osen'yu 2017 year // Optika atmosf. i okeana. 2019. V. 32, N 2. PС. 162–167.
  9. Baran A.J., Francis P.N., Havemann S., Yang P. A study of the absorption and extinction properties of hexagonal ice columns and plates in random and preferred orientation, using exact T-matrix theory and aircraft observations of cirrus // J. Quant. Spectrosc. Radiat. Transfer. 2001. V. 70, N 4–6. P. 505–518. DOI: 10.1016/S0022-4073(01)00025-5.
  10. Sassen K., Dodd G.C. Haze Particle Nucleation Simulations in Cirrus Clouds, and Applications for Numerical and Lidar Studies // J. Atmos. Sci. Am. Meteorol. Soc. 1989. V. 46, N 19. P. 3005–3014. DOI: 10.1175/1520-0469(1989)046<3005:HPNSIC>2.0.CO;2.
  11. Burns J.A., Lamy P.L., Soter S. Radiation forces on small particles in the solar system // Icarus. Oxford University Press. 1979. V. 40, N 1. P. 1–48. DOI: 10.1016/0019-1035(79)90050-2.
  12. Savage J., Harrington W., McKinley R.A., Burns H.N., Braddom S., Szoboszlay Z. 3D-LZ helicopter ladar imaging system // Proc. SPIE. / M.D. Turner, G.W. Kamerman (eds.). 2010. DOI: 10.1117/12.853625.
  13. Murray J.T., Seely J., Plath J., Gotfreson E., Engel J., Ryder B., Van Lieu N., Goodwin R., Wagner T., Fetzer G., Kridler N., Melancon C., Panici K., Mitchell A. Dust-Penetrating (DUSPEN) “see-through” lidar for helicopter situational awareness in DVE // Proc. SPIE. / K.L. Bernier, J.J. Güell (eds.). 2013. DOI: 10.1117/12.2016439.
  14. Moorman R.W. Through Sand and Fog - U.S. military looks for specific systems to improve situational awareness for landing in degraded visual environments // Avionics International, January 1, 2012. URL: https:// www.aviationtoday.com / 2012 / 01 / 01 / through-sand-and-fog/ (last access: 27.02.2020).
  15.  Münsterer T., Rannik P., Wegner M., Tanin P., Samuelis C. Usage of LiDAR in a brownout pilotage system: Flight test results on a single ship and chalk 2 scenarios // Proc. SPIE. / J.N. Sanders-Reed, J.J. Arthur (eds.). 2017. DOI: 10.1117/12.2263878.
  16.  Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen // Ann. Phys. 1908. V. 25. P. 377–445.
  17.  Boren K., Hafman D. Pogloshchenie i rasseyanie sveta malymi chastitsami. M.: Mir, 1986. 660 p.
  18. Kablukova E.G., Kargin B.A., Lisenko A.A., Matvienko G.G. Chislennoe modelirovanie polyarizatsionnyh harakteristik ekhosignala pri nazemnom zondirovanii oblakov v terragertsovom diapazone // Optika atmosf. i okeana. 2015. V. 28, N 10. P. 892–900; Kablukova E.G., Kargin B.A., Lisenko A.A., Matvienko G.G. Numerical simulation of polarization characteristics of an echo signal in the process of ground-based cloud sensing in the terahertz range // Atmos. Ocean. Opt. 2016. V. 29, N 1. P. 33–41.
  19. Hecht J. Lidar for self-driving cars // Opt. Photon. News. 2018. V. 29, N 1. P. 26–35.
  20. ScatterLib [Electronic resource]. URL: http://scatterlib.wikidot.com/mie (last access: 27.02.2020).
  21. MiePlot [Electronic resource]. URL: http://www.philiplaven.com/mieplot.htm (last access: 27.02.2020).
  22. Warren S.G., Brandt R.E. Optical constants of ice from the ultraviolet to the microwave: A revised compilation // J. Geophys. Res. Am. Geophys. Union. D. 2008. V. 113, N 14. DOI:  10.1029/2007JD009744.
  23. Warren S.G. Optical constants of ice from the ultraviolet to the microwave // Appl. Opt. The Opt. Soc. 1984. V. 23, N 8. P. 1206. DOI: 10.1364/AO.23.001206.
  24. Hale G.M., Querry M.R. Optical Constants of Water in the 200-nm to 200-mm Wavelength Region // Appl. Opt. Opt. Soc. 1973. V. 12, N 3. P. 555. DOI: 10.1364/AO.12.000555.
  25. Bank dannyh matrits obratnogo rasseyaniya sveta sfericheskih chastits [Elektronnyj resurs]. URL: ftp://ftp.iao.ru/pub/GWDT/Mie/ (data obrashcheniya: 27.02.2020).
  26. Yazdani M., Mautz J., Murphy L., Arvas E. High-Frequency Scattering From Radially Uniaxial Dielectric Sphere // IEEE Antennas Wirel. Propag. Lett. 2015. V. 14. P. 1577–1581. DOI: 10.1109/LAWP.2015.2413399.
  27. Hovenac E.A., Lock J.A. Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series // J. Opt. Soc. Am. A. 1992. V. 9. P. 781–795.
  28. Grandy W.T. Chapter 5. Short-waveleght scattering from transparent shperes // Scattering of Waves Large Spheres. England: Cambridge University Press, 2000. P. 141–186.