Vol. 33, issue 07, article # 10

Denisova N. Yu., Gribanov K. G., Werner M. Validation of AGCMs ECHAM using laser spectrometer data obtained at two Arctic stations. // Optika Atmosfery i Okeana. 2020. V. 33. No. 07. P. 565–570. DOI: 10.15372/AOO20200710 [in Russian].
Copy the reference to clipboard


To validate the atmospheric general circulation models ECHAM5-wiso and ECHAM6-wiso with embedded water isotopic modules, the simulation with nudging to known fields of temperature, pressure, wind speed and direction obtained from retrospective climate analysis was performed. The simulation results were compared with data on the isotopic composition (dHDO and dH218O) of water vapor in atmospheric air near the surface obtained at two monitoring stations: in Labytnangi (66.660N, 66.409E) and in Igarka (67.453N, 86.535E). An unambiguous conclusion about the superiority of the newer model ECHAM6-wiso could not be made, because the simulation results with its use demonstrate a better agreement with the values observed in Igarka, while the model ECHAM5-wiso shows a better agreement with the values observed in Labytnangi. The simulation results can be used as an a priori ensemble for solving inverse problems of remote sensing of the atmosphere in Western Siberia.


atmospheric general circulation model, water isotopologues


  1. Mohov I.I. Izmeneniya klimata v Arktike // Zemlya i vselennaya. 2006. N 2. P. 34–40.
  2. Karahanyan A.A. Dolgovremennye izmeneniya atmosfernoj tsirkulyatsii i klimata na territorii Sibiri // Optika atmosf. i okeana. 2005. V. 18, N 12. P. 1104–1106.
  3. Semenov V.A., Mohov I.I., Latif M. Vliyanie temperatury poverhnosti okeana i granits morskogo l'da na izmenenie regional'nogo klimata v Evrazii za poslednie desyatiletiya // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 4. P. 403–421.
  4. Callaghan T.V., Jonasson S. Arctic terrestrial ecosystems and environmental change // Philos. Trans. Roy. Soc. London. 1995. N 352. P. 259–276.
  5. Dlugokencky E.J., Masarie K.A., Lang P.M., Tans P.P. Continuing decline in the growth rate of the atmospheric methane burden // Nature. 1998. N 393. P. 447–450.
  6. Budyko M.I. Klimat v proshlom i budushchem. L.: Gidrometeoizdat, 1980. 362 p.
  7. Held I.M. Robust responses of the hydrological cycle to global warming // J. Clim. 2006. V. 19, iss. 21. P. 5686–5699.
  8. Kattsov V.M., Porfir'ev B.N. Klimaticheskie izmeneniya v Arktike: posledstviya dlya okruzhayushchej sredy i ekonomiki // Arktika: ekologiya i ekonomika. 2012. N 2 (6). P. 66–79.
  9. Schmidt G.A., Hoffmann G., Shindell D. T., Hu Y. Modeling atmospheric stable water isotopes and the potential for constraining cloud processes and stratosphere-troposphere water exchange // J. Geophys. Res. 2005. N 110. P. D21314.
  10. Dansgaard W. Stable isotopes in precipitation // Tellus. 1964. V. 16, N 4. P. 436–468.
  11. Jouzel J., Alley R.B., Cuffey K.M., Dansgaard W., Grootes P., Hoffmann G., Jonsen S.J., Koster R.D., Peel D., Shuman C.A., Stievenard M., Stuiver M., White J.W. Validity of the temperature reconstruction from water isotopes in ice cores // J. Geophys. Res. 1997. N 102 (C12). P. 26471–26487.
  12. Sturm C., Zhang Q., Noone D. An introduction to stable water isotopes in climate models: Benefits of forward proxy modelling for paleoclimatology // Clim. Past. 2010. N 6. P. 115–129.
  13. Polyakov V.A., Ferronskij V.I. Izotopiya gidrosfery Zemli. M.: Nauchnyj mir, 2009. 632 p.
  14. Galewsky J., Steen-Larsen H.C., Field R.D., Worden J., Risi C., Schneider M. Stable isotopes in atmospheric water vapor and applications to the hydrologic cycle // Rev. Geophys. 2016. V. 54, iss. 4. P. 809–865.
  15. Roeckner E., Arpe K., Bengtsson L., Brinkop S., Dümenil L., Esch M., Kirk E., Lunkeit F., Ponater M., Rockel B., Sausen R., Schleese U., Schubert S., Windelband M. Simulation of the present-day climate with the ECHAM model: Impact of model physics and resolution. Hamburg: Max Planck Institute for Meteorology, 1992. 110 p.
  16. Roeckner E., Bäuml G., Bonaventura L., Brokopf R., Esch M., Giorgetta M., Hagemann S., Kirchner I., Kornblueh L., Manzini E., Rhodin A., Schlese U., Schulzweida U., Tompkins A. The general circulation model ECHAM5. Part I: Model description. Hamburg: Max Planck Institute for Meteorology, 2003. 127 p.
  17. Werner M., Langebroek P.M., Carlsen T., Herold M., Lohmann G. Stable water isotopes in the ECHAM5 general circulation model: Towards high-resolution isotope modeling on a global scale // J. Geophys. Research. 2011. V. 116. N. D15109.
  18. Cauquoin A., Werner M., Lohmann G. Water isotopes – climate relationships for the mid-Holocene and preindustrial period simulated with an isotope-enabled version of MPI-ESM // Clim. Past. 2019. N 15. P. 1913–1937.
  19. Hoffmann G., Werner M., Heimann M. Water isotope module of the ECHAM atmospheric general circulation model: A study on timescales from days to several years // J. Geophys. Res. 1998. V. 103(D14). P. 16871–16896.
  20. Hoffmann G., Jouzel J., Masson V. Stable water isoto­pes in atmospheric general circulation models // Hydrol. Process. 2000. V. 14. N 8. P. 1385–1406.
  21. Lee J.-E., Fung I., DePaolo D.J., Henning C.C. Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model // J. Geophys. Res. 2007. V. 112. N. D16306.
  22. Tindall J.C., Valdes P.J., Sime L.C. Stable water isotopes in HadCM3: Isotopic signature of El Niño – Southern Oscillation and the tropical amount effect // J. Geophys. Res. 2009. V. 114. N. D04111.
  23. Risi C., Bony S., Vimeux F., Jouzel J. Water–stable isotopes in the LMDZ4 general circulation model: Model evaluation for present–day and past climates and applications to climatic interpretations of tropical isotopic records // J. Geophys. Res. 2010. V. 115. N. D12118.
  24. Werner M. Modelling stable water isotopes: Status and perspectives // EPJ Web Conf. 2010. N 9. P. 73–82.
  25. Butzin M., Werner M., Masson-Delmotte V., Risi C., Frankenberg C., Gribanov K., Jouzel J., Zakharov V.I. Variations of oxygen-18 in West Siberian precipitation during the last 50 years // Atmos. Chem. Phys. 2014. N 14. P. 5853–5869.
  26. ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter 110, Winter 2006/7 [Electronic resource]. URL: http://old.ecmwf.int/publications/newsletters/pdf/110_rev.pdf (last access: 09.02.2019).
  27. European Centre for Medium-Range Weather Forecasts. 2017, updated monthly. ERA5 Reanalysis. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [Electronic resource]. URL: https://doi.org/ 10.5065/D6X34W69 (last access: 19.08.2019).
  28. Zakharov V.I., Imasu R., Gribanov K.G., Hoffmann G., Jouzel J. Latitudinal distribution of the deuterium to hydrogen ratio in the atmospheric water vapor retrieved from IMG/ADEOS data // Geophys. Res. Lett. 2004. V 31. N. L12104.
  29. Herbin H., Hurtmans D., Clerbaux C., Clarisse L., Coheur P.-F. H216O and HDO measurements with IASI/ MetOp // Atmos. Chem. Phys. 2009. N 9. P. 9433–9447.