Vol. 33, issue 07, article # 2

Bazhenov O. E., Nevzorov A. A., Nevzorov A. V., Dolgii S. I., Makeev A. P. Disturbance of the stratosphere over Tomsk in winter 2017/2018 using lidar and Aura MLS/OMI observations. // Optika Atmosfery i Okeana. 2020. V. 33. No. 07. P. 509–515. DOI: 10.15372/AOO20200702 [in Russian].
Copy the reference to clipboard


Lidar observations at Siberian Lidar Station (SLS) of Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences in Tomsk (56.5°N; 85.0°E) showed the presence of stratospheric aerosol layers over Tomsk during winter 2017–2018, signs of descending air masses, and deficit of ozone. Aura OMI/MLS observations indicated that in December–January 2017/2018 the total ozone (TO) content and NO2 content in the stratosphere over the Northern Eurasia, as well as the temperature in the stratosphere, were significantly lower than normal. Analysis of back trajectories and integrated (over profile) TO showed that the dynamic disturbance of the Arctic stratosphere in December 2017 led to extrusion of cold air masses with excessive reactive chlorine (in view of NO2 deficit) beyond the Arctic circle and their intrusion into the stratosphere of Tomsk. Seemingly, in the Tomsk stratosphere they were exposed to solar radiation and, staying chemically isolated, evolved into chemically disturbed state, similar to the state of springtime Arctic stratosphere, where ozone is intensely destroyed until the final warming.


lidar, Aura satellite, stratospheric aerosol layer, ozone, sudden stratospheric warming, solar illumination, disturbance


  1. Solomon S. Stratospheric ozone depletion: A review of concepts and history // Rev. Geophys. 1999. V. 37, N 3. P. 275–316. DOI: 10.1029/1999RG900008.
  2. Von Clarmann T. Chlorine in the stratosphere // Atmosfera. 2013. V. 26, N 3. P. 415–458.
  3. Bazhenov O.E. Increased humidity in the stratosphere as a possible factor of ozone destruction in the Arctic during the spring 2011 using Aura MLS observations // Int. J. Remote Sens. 2019. V. 40, N 9. P. 3448–3460. DOI: 10.1080/01431161.2018.1547449.
  4. Jiang Y., Yung Y.L., Zurek R.W. Decadal evolution of the Antarctic ozone hole // J. Geophys. Res. D. 1996. V. 101, N 4. P. 8985–8999. DOI: 10.1029/96JD00063.
  5. Sanders R.V., Solomon S., Smith J.P., Perliski L., Miller H.L., Mount G.H., Keys J.G., Schmeltekoph A.L. Visible and near-ultraviolet spectroscopy at McMurdo Station, Antarctica: 9. Observations of OClO from April to October 1991 // J. Geophys. Res. D. 1993. V. 98, N 4. P. 7219–7228. DOI: 10.1029/93JD00042.
  6. Solomon S., Sanders R.W., Miller H.L., Jr. Visible and near-ultraviolet spectroscopy at McMurdo Station, Antarctica 7. OClO diurnal photochemistry and implications for ozone destruction // J. Geophys. Res. D. 1990. V. 95, N 9. P. 13,807–13,817. DOI: 10.1029/JD095iD09p13807.
  7. Singleton C.S., Randall C.E., Chipperfield M.P., Davies S., Feng W., Bevilacqua R.M., Hoppel K.W., Fromm M.D., Manney G.L., Harvey V.L. 2002–2003 Arctic ozone loss deduced from POAM III satellite observations and the SLIMCAT chemical transport model // Atmos. Chem. Phys. 2005 V. 5. P. 597–609. DOI: 10.5194/acp-5-597-2005.
  8. Manney G.L., Lawrence Z.D., Santee M.L., Read W.G., Livesey N.J., Lambert A., Froidevaux L., Pumphrey H.C., Schwartz M.J. A minor sudden stratospheric warming with a major impact: Transport and polar processing in the 2014/2015 Arctic winter // Geophys. Res. Lett. 2015. V. 42. P. 7808–7816. DOI: 10.1002/2015GL065864.
  9. Bazhenov O.E. Quasi-biennial oscillation of the total ozone and ozone concentrations at separate altitude levels over Arctic and Tomsk according to TOMS, OMI, and MLS observations // Int. J. Remote Sens. 2015. V. 36, N 12. P. 3033–3040. DOI: 10.1080/01431161.2015.1055609.
  10. Charlton A.J., Polvani L.M. A new look at stratospheric sudden warmings. Part I. Climatology and modeling benchmarks // J. Clim. 2007. V. 20, N 3. P. 449–471. DOI: 10.1175/JCLI3996.1.
  11. Rao J., Ren R., Chen H., Yu Y., Zhou Y. The stratospheric sudden warming event in February 2018 and its prediction by a climate system model // J. Geophys. Res. 2018. V. 23, iss. 123. DOI: 10.1029/2018JD028908.
  12. Flury T., Hocke K., Haefele A., Kämpfer N., Lehmann R. Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming // J. Geophys. Res. D. 2009. V. 114, N 18302. DOI: 10.1029/2009JD011940.
  13. Manney G.L., Lawrence Z.D., Santee M.L., Livesey N.J., Lambert A., Pitts M.C. Polar processing in a split vortex: Arctic ozone loss in early winter 2012/2013 // Atmos. Chem. Phys. 2015. V. 15. P. 5381–5403. DOI: 10.5194/acp-15-5381-2015.
  14. Manney G.L., Lawrence Z.D. The major stratospheric final warming in 2016: Dispersal of vortex air and termination of Arctic chemical ozone loss // Atmos. Chem. Phys. 2016. V. 16. P. 15371–15396. DOI: 10.5194/acp-16-15371-2016.
  15. Burlakov V.D., Dolgij S.I., Nevzorov A.V. Modernizatsiya izmeritel'nogo kompleksa Sibirskoj lidarnoj stantsii // Optika atmosf. i okeana. 2004. V. 17, N 10. P. 857–864.