Vol. 31, issue 12, article # 10

Loboda E.L., Matvienko O.V., Agafontsev M.V., Reino V.V. The use of thermography to assess the turbulence scales in flame. // Optika Atmosfery i Okeana. 2018. V. 31. No. 12. P. 1001–1006 [in Russian].
Copy the reference to clipboard
Abstract:

The results of theoretical and experimental studies on determination of the scales of turbulent vortices in flame produced during the combustion of liquid hydrocarbon fuels and vegetable combustible materials with the usе of thermography methods are presented. A good agreement is shown between the sizes of temperature inhomogeneities experimentally measured in thermograms with the scales of turbulent vortices calculated from the spectra of the temperature variations in the test flame.

Keywords:

IR thermography, combustion, spectrum, temperature, turbulence

Figures:
References:

  1.  Lewis B., Elbe G. Combustion, аlames and уxplosions of gases. Cambridge: Academic Press. 1987. 731 p.
   2. Warnatz J., Maas U., Dibble R.W.  Combustion. Berlin: Springer, 1999. 300 p.
   3. Shelkin K.I. Influence of tube non-uniformities on the detonation ignition and propagation in gases // J. Exp. Theor. Phys. 1940. V. 10. P. 823–827.
   4. Damkölhler G. Der Einfiuss der Turbulenz auf die Flammengeschwindigkeit in Gasgemischen // Zs. Elektrochem. 1940. V. 46. P. 601.
   5. Libby P., Williams F.A. Turbulent Reacting Flows. Academic Press. 1994. P. 1–43.
   6. Spalding D.B. Mixing and chemical reaction in steady confined turbulent flames // 13th International Symposium on Combustion. 1971. V. 13, iss. 1. P. 649–657.
   7. Gran I.R., Ertesvag I.S., Magnussen B.F. Influence of turbulence modeling on predictions of turbulent combustion // AIAA J. 1996. V. 35, N 1. P. 106,
   8. Lilleheie N.I., Byggstøyl, Magnussen B.F. Numerical calculations of turbulent diffusion flames with full chemical kinetics // Task Leaders Meeting. IEA. Amalfi, Italy, 1988. P. 3–5
   9. Bray K.N.C., Champion M., Libby P.A., Swaminathan N. Finite rate chemistry and presumed pdf models for premixed turbulent combustion // Combust. Flame. 2006. V. 146, iss. 4. P. 665–673.
10. Egorov A.G., Tizilov A.S., Niyazov V.YA., Arkhipov V.A., Matvienko O.V. Issledovanie vliyaniya zakrutki sputnogo vysokoskorostnogo potoka vozdukha na geometricheskie parametry alyuminievo-vozdushnogo fakela // Khim. fizika. 2014. V. 33, N 10. P. 58–61.
11. Arkhipov V.A., Egorov A.G., Ivanin S.V., Maslov E.A., Matvienko O.V. Chislennoe modelirovanie aerodinamiki i goreniya gazov zvesi v kanale s vnezapnym rasshireniem // Fizika goreniya i vzryva. 2010. V. 46, N 6. P. 39–48.
12. Loboda E.L., Reyno V.V., Vavilov V.P. The use of infrared thermography to study the optical characteristics of flames from burning vegetation // Infrared Phys. Technol. 2014. V. 67. P. 566–573.
13. Kuznetsov V.T., Loboda E.L. Eksperimental'noe issledovanie vosplameneniya torfa pod vozdeystviem potoka luchistoy energii // Fizika goreniya i vzryva. 2010. V. 46, N 6. P. 86–92.
14. Qian C., Saito K. Measurements of pool-fire temperature using ir technique // Combustion Institute/Central and Western States (USA) and Combustion Institute / Mexican National Section and American Flame Research Committee. Combustion Fundamentals and Applications. Joint Technical Meeting. Proceedings. San Antonio, TX, 1995. P. 81–86.
15. Rinieri F., Balbi J.-H., Santoni P-A. On the use of an infra-red camera for the measurement of temperature in fires of vegetative fuels [Electronic resource] // QIRT. URL: http://qirt.gel.ulaval.ca/archives/qirt2006/papers/ 011.pdf (last access: 21.04.2018).
16. Dupuy J., Vachet P., Maréchal J., Meléndez J., De Castro A.J. Thermal infrared emission–transmission measurements in flames from a cylindrical forest fuel burner // International Journal of Wildland Fire. 2007. N 16. C. 324–340.
17. Loboda E.L., Reyno V.V. Vliyanie koeffitsienta izlucheniya plameni na izmerenie temperatur IK-metodami pri gorenii lesnykh i stepnykh goryuchikh materialov i razlichnom vlagosoderzhanii. CHastotnyy analiz izmeneniya temperatury v plameni // Optika atmosf. i okeana. 2011. V. 24, N 11. P. 1002–1006.
18. Anufriev I.S., Anikin Yu.A., Fil'kov A.I., Loboda E.L., Agafontseva M.V., Kasymov D.P., Tizilov A.S., Astanin A.V., Pesterev A.V., Evtyushkin E.V. Issledovanie struktury zakruchennogo potoka v modeli vikhrevoy kamery sgoraniya metodom lazernoy doplerovskoy anemometrii // Pis'ma v zhurn. tekhn. fiziki. 2012. V. 38, N 24. P. 39–45.
19. Alekseenko S.V., Anufriev I.S., Vigriyanov M.S., Dulin V.M., Kop'ev E.P., Sharypov O.V. Sazheparovoy rezhim goreniya zhidkikh uglevodorodov: raspredelenie skorosti v fakele gorelki // Teplofizika i aeromekhanika. 2014. V. 21, N 3. P. 411–414.
20. Anufriev I.S., Kopyev E.P., Loboda E.L. Study of flame characteristics during liquid hydrocarbons combustion with steam gasification // Proc. SPIE 9292, 20th Intern. Symp. on Atmos. and Ocean Opt.: Atmos. Phys. 2014. V. 9292. DOI: 10.1117/ 12.2086623.
21. Kairuki J., Dawson J.R., Mastorakos E. Measurements in turbulent premixed bluff body flames close to blow-off // Combust. Flame. 2012. V. 159, iss. 8. P. 2589–2607. DOI: 10.1016/j.combustflame.2012.01.005.
22. Loboda E.L., Reyno V.V., Agafontsev M.V. Vybor spektral'nogo intervala dlya izmereniya poley temperatury v plameni i registratsii ekranirovannykh plamenem vysokotemperaturnykh ob"ektov s primeneniem metodov IK-diagnostiki // Izv. vuzov. Fizika. 2015. V. 58, N 2. P. 124–128.
23. Schlichting H., Gersten K. Grenzschicht-Theorie. Berlin, Heidelberg: Springer-Verlag, 2006. DOI: 10.1007/ 3-540-32985-4.
24. Anufriev I.S., Krasinskiy D.V., Shadrin E.Yu., Sharypov O.V. Vizualizatsiya struktury potoka v vikhrevoy topke // Pis'ma v zhurn. tekhn. fiziki. 2014. V. 40, N 19. P. 104–110.
25. Loboda E.L., Anufriev J.S., Agafontsev M.V., Kopyev E.P., Shadrin E.Y., Reyno V.V., Vavilov V.P., Lutsenko A.V. Evaluating characteristics of turbulent flames by using IR thermography and PIV // Infrared Phys. Technol. 2018. V. 92. P. 240–243.
 

Back